🍩 Database of Original & Non-Theoretical Uses of Topology

(found 11 matches in 0.011512s)
  1. Filtration Curves for Graph Representation (2021)

    Leslie O'Bray, Bastian Rieck, Karsten Borgwardt
    Abstract The two predominant approaches to graph comparison in recent years are based on (i) enumerating matching subgraphs or (ii) comparing neighborhoods of nodes. In this work, we complement these two perspectives with a third way of representing graphs: using filtration curves from topological data analysis that capture both edge weight information and global graph structure. Filtration curves are highly efficient to compute and lead to expressive representations of graphs, which we demonstrate on graph classification benchmark datasets. Our work opens the door to a new form of graph representation in data mining.
  2. Topological Attention for Time Series Forecasting (2021)

    Sebastian Zeng, Florian Graf, Christoph Hofer, Roland Kwitt
    Abstract The problem of (point) forecasting univariate time series is considered. Most approaches, ranging from traditional statistical methods to recent learning-based techniques with neural networks, directly operate on raw time series observations. As an extension, we study whether local topological properties, as captured via persistent homology, can serve as a reliable signal that provides complementary information for learning to forecast. To this end, we propose topological attention, which allows attending to local topological features within a time horizon of historical data. Our approach easily integrates into existing end-to-end trainable forecasting models, such as N-BEATS, and, in combination with the latter exhibits state-of-the-art performance on the large-scale M4 benchmark dataset of 100,000 diverse time series from different domains. Ablation experiments, as well as a comparison to recent techniques in a setting where only a single time series is available for training, corroborate the beneficial nature of including local topological information through an attention mechanism.
  3. Graph Filtration Learning (2020)

    Christoph Hofer, Florian Graf, Bastian Rieck, Marc Niethammer, Roland Kwitt
    Abstract We propose an approach to learning with graph-structured data in the problem domain of graph classification. In particular, we present a novel type of readout operation to aggregate node features into a graph-level representation. To this end, we leverage persistent homology computed via a real-valued, learnable, filter function. We establish the theoretical foundation for differentiating through the persistent homology computation. Empirically, we show that this type of readout operation compares favorably to previous techniques, especially when the graph connectivity structure is informative for the learning problem.
  4. Steinhaus Filtration and Stable Paths in the Mapper (2020)

    Dustin L. Arendt, Matthew Broussard, Bala Krishnamoorthy, Nathaniel Saul
    Abstract Two central concepts from topological data analysis are persistence and the Mapper construction. Persistence employs a sequence of objects built on data called a filtration. A Mapper produces insightful summaries of data, and has found widespread applications in diverse areas. We define a new filtration called the cover filtration built from a single cover based on a generalized Steinhaus distance, which is a generalization of Jaccard distance. We prove a stability result: the cover filtrations of two covers are \$\alpha/m\$ interleaved, where \$\alpha\$ is a bound on bottleneck distance between covers and \$m\$ is the size of smallest set in either cover. We also show our construction is equivalent to the Cech filtration under certain settings, and the Vietoris-Rips filtration completely determines the cover filtration in all cases. We then develop a theory for stable paths within this filtration. Unlike standard results on stability in topological persistence, our definition of path stability aligns exactly with the above result on stability of cover filtration. We demonstrate how our framework can be employed in a variety of applications where a metric is not obvious but a cover is readily available. First we present a new model for recommendation systems using cover filtration. For an explicit example, stable paths identified on a movies data set represent sequences of movies constituting gentle transitions from one genre to another. As a second application in explainable machine learning, we apply the Mapper for model induction, providing explanations in the form of paths between subpopulations. Stable paths in the Mapper from a supervised machine learning model trained on the FashionMNIST data set provide improved explanations of relationships between subpopulations of images.
  5. Characterising Epithelial Tissues Using Persistent Entropy (2019)

    N. Atienza, L. M. Escudero, M. J. Jimenez, M. Soriano-Trigueros
    Abstract In this paper, we apply persistent entropy, a novel topological statistic, for characterization of images of epithelial tissues. We have found out that persistent entropy is able to summarize topological and geometric information encoded by \$\$\alpha \$\$α-complexes and persistent homology. After using some statistical tests, we can guarantee the existence of significant differences in the studied tissues.
  6. A Persistent Weisfeiler-Lehman Procedure for Graph Classification (2019)

    Bastian Rieck, Christian Bock, Karsten Borgwardt
    Abstract The Weisfeiler–Lehman graph kernel exhibits competitive performance in many graph classification tasks. However, its subtree features are not able to capture connected components and cycles, topological features known for characterising graphs. To extract such features, we leverage propagated node label information and transform unweighted graphs into metric ones. This permits us to augment the subtree features with topological information obtained using persistent homology, a concept from topological data analysis. Our method, which we formalise as a generalisation of Weisfeiler–Lehman subtree features, exhibits favourable classification accuracy and its improvements in predictive performance are mainly driven by including cycle information.
  7. Possible Clinical Use of Big Data: Personal Brain Connectomics (2018)

    Dong Soo Lee
    Abstract The biggest data is brain imaging data, which waited for clinical use during the last three decades. Topographic data interpretation prevailed for the first two decades, and only during the last decade, connectivity or connectomics data began to be analyzed properly. Owing to topological data interpretation and timely introduction of likelihood method based on hierarchical generalized linear model, we now foresee the clinical use of personal connectomics for classification and prediction of disease prognosis for brain diseases without any clue by currently available diagnostic methods.
  8. Multidimensional Persistence in Biomolecular Data (2015)

    Kelin Xia, Guo-Wei Wei
    Abstract Persistent homology has emerged as a popular technique for the topological simplification of big data, including biomolecular data. Multidimensional persistence bears considerable promise to bridge the gap between geometry and topology. However, its practical and robust construction has been a challenge. We introduce two families of multidimensional persistence, namely pseudo-multidimensional persistence and multiscale multidimensional persistence. The former is generated via the repeated applications of persistent homology filtration to high dimensional data, such as results from molecular dynamics or partial differential equations. The latter is constructed via isotropic and anisotropic scales that create new simiplicial complexes and associated topological spaces. The utility, robustness and efficiency of the proposed topological methods are demonstrated via protein folding, protein flexibility analysis, the topological denoising of cryo-electron microscopy data, and the scale dependence of nano particles. Topological transition between partial folded and unfolded proteins has been observed in multidimensional persistence. The separation between noise topological signatures and molecular topological fingerprints is achieved by the Laplace-Beltrami flow. The multiscale multidimensional persistent homology reveals relative local features in Betti-0 invariants and the relatively global characteristics of Betti-1 and Betti-2 invariants.
  9. A Topological Measurement of Protein Compressibility (2015)

    Marcio Gameiro, Yasuaki Hiraoka, Shunsuke Izumi, Miroslav Kramar, Konstantin Mischaikow, Vidit Nanda
    Abstract In this paper we partially clarify the relation between the compressibility of a protein and its molecular geometric structure. To identify and understand the relevant topological features within a given protein, we model its molecule as an alpha filtration and hence obtain multi-scale insight into the structure of its tunnels and cavities. The persistence diagrams of this alpha filtration capture the sizes and robustness of such tunnels and cavities in a compact and meaningful manner. From these persistence diagrams, we extract a measure of compressibility derived from those topological features whose relevance is suggested by physical and chemical properties. Due to recent advances in combinatorial topology, this measure is efficiently and directly computable from information found in the Protein Data Bank (PDB). Our main result establishes a clear linear correlation between the topological measure and the experimentally-determined compressibility of most proteins for which both PDB information and experimental compressibility data are available. Finally, we establish that both the topological measurement and the linear correlation are stable with respect to small perturbations in the input data, such as those arising from experimental errors in compressibility and X-ray crystallography experiments.
  10. Persistent Brain Network Homology From the Perspective of Dendrogram (2012)

    Hyekyoung Lee, Hyejin Kang, Moo K. Chung, Bung-Nyun Kim, Dong Soo Lee
    Abstract The brain network is usually constructed by estimating the connectivity matrix and thresholding it at an arbitrary level. The problem with this standard method is that we do not have any generally accepted criteria for determining a proper threshold. Thus, we propose a novel multiscale framework that models all brain networks generated over every possible threshold. Our approach is based on persistent homology and its various representations such as the Rips filtration, barcodes, and dendrograms. This new persistent homological framework enables us to quantify various persistent topological features at different scales in a coherent manner. The barcode is used to quantify and visualize the evolutionary changes of topological features such as the Betti numbers over different scales. By incorporating additional geometric information to the barcode, we obtain a single linkage dendrogram that shows the overall evolution of the network. The difference between the two networks is then measured by the Gromov-Hausdorff distance over the dendrograms. As an illustration, we modeled and differentiated the FDG-PET based functional brain networks of 24 attention-deficit hyperactivity disorder children, 26 autism spectrum disorder children, and 11 pediatric control subjects.