🍩 Database of Original & Non-Theoretical Uses of Topology
(found 21 matches in 0.006386s)
-
-
Using Topological Data Analysis for Text Classification (2018)
Pratik Doshi -
The Topological Basis of Function in Flow and Mechanical Networks (2019)
Jason Rocks, Andrea Liu, Eleni Katifori -
Possible Clinical Use of Big Data: Personal Brain Connectomics (2018)
Dong Soo LeeAbstract
The biggest data is brain imaging data, which waited for clinical use during the last three decades. Topographic data interpretation prevailed for the first two decades, and only during the last decade, connectivity or connectomics data began to be analyzed properly. Owing to topological data interpretation and timely introduction of likelihood method based on hierarchical generalized linear model, we now foresee the clinical use of personal connectomics for classification and prediction of disease prognosis for brain diseases without any clue by currently available diagnostic methods. -
Filtration Curves for Graph Representation (2021)
Leslie O'Bray, Bastian Rieck, Karsten BorgwardtAbstract
The two predominant approaches to graph comparison in recent years are based on (i) enumerating matching subgraphs or (ii) comparing neighborhoods of nodes. In this work, we complement these two perspectives with a third way of representing graphs: using filtration curves from topological data analysis that capture both edge weight information and global graph structure. Filtration curves are highly efficient to compute and lead to expressive representations of graphs, which we demonstrate on graph classification benchmark datasets. Our work opens the door to a new form of graph representation in data mining. -
Graph Filtration Learning (2020)
Christoph Hofer, Florian Graf, Bastian Rieck, Marc Niethammer, Roland KwittAbstract
We propose an approach to learning with graph-structured data in the problem domain of graph classification. In particular, we present a novel type of readout operation to aggregate node features into a graph-level representation. To this end, we leverage persistent homology computed via a real-valued, learnable, filter function. We establish the theoretical foundation for differentiating through the persistent homology computation. Empirically, we show that this type of readout operation compares favorably to previous techniques, especially when the graph connectivity structure is informative for the learning problem. -
Using Persistent Homology to Reveal Hidden Information in Neural Data (2015)
Gard Spreemann, Benjamin Dunn, Magnus Bakke Botnan, Nils A. BaasAbstract
We propose a method, based on persistent homology, to uncover topological properties of a priori unknown covariates of neuron activity. Our input data consist of spike train measurements of a set of neurons of interest, a candidate list of the known stimuli that govern neuron activity, and the corresponding state of the animal throughout the experiment performed. Using a generalized linear model for neuron activity and simple assumptions on the effects of the external stimuli, we infer away any contribution to the observed spike trains by the candidate stimuli. Persistent homology then reveals useful information about any further, unknown, covariates. -
Topological Attention for Time Series Forecasting (2021)
Sebastian Zeng, Florian Graf, Christoph Hofer, Roland KwittAbstract
The problem of (point) forecasting univariate time series is considered. Most approaches, ranging from traditional statistical methods to recent learning-based techniques with neural networks, directly operate on raw time series observations. As an extension, we study whether local topological properties, as captured via persistent homology, can serve as a reliable signal that provides complementary information for learning to forecast. To this end, we propose topological attention, which allows attending to local topological features within a time horizon of historical data. Our approach easily integrates into existing end-to-end trainable forecasting models, such as N-BEATS, and, in combination with the latter exhibits state-of-the-art performance on the large-scale M4 benchmark dataset of 100,000 diverse time series from different domains. Ablation experiments, as well as a comparison to recent techniques in a setting where only a single time series is available for training, corroborate the beneficial nature of including local topological information through an attention mechanism. -
Using Zigzag Persistent Homology to Detect Hopf Bifurcations in Dynamical Systems (2020)
Sarah Tymochko, Elizabeth Munch, Firas A. KhasawnehAbstract
Bifurcations in dynamical systems characterize qualitative changes in the system behavior. Therefore, their detection is important because they can signal the transition from normal system operation to imminent failure. While standard persistent homology has been used in this setting, it usually requires analyzing a collection of persistence diagrams, which in turn drives up the computational cost considerably. Using zigzag persistence, we can capture topological changes in the state space of the dynamical system in only one persistence diagram. Here we present Bifurcations using ZigZag (BuZZ), a one-step method to study and detect bifurcations using zigzag persistence. The BuZZ method is successfully able to detect this type of behavior in two synthetic examples as well as an example dynamical system. -
Visual Detection of Structural Changes in Time-Varying Graphs Using Persistent Homology (2018)
Mustafa Hajij, Bei Wang, Carlos Scheidegger, Paul RosenAbstract
Topological data analysis is an emerging area in exploratory data analysis and data mining. Its main tool, persistent homology, has become a popular technique to study the structure of complex, high-dimensional data. In this paper, we propose a novel method using persistent homology to quantify structural changes in time-varying graphs. Specifically, we transform each instance of the time-varying graph into a metric space, extract topological features using persistent homology, and compare those features over time. We provide a visualization that assists in time-varying graph exploration and helps to identify patterns of behavior within the data. To validate our approach, we conduct several case studies on real-world datasets and show how our method can find cyclic patterns, deviations from those patterns, and one-time events in time-varying graphs. We also examine whether a persistence-based similarity measure satisfies a set of well-established, desirable properties for graph metrics. -
Multidimensional Persistence in Biomolecular Data (2015)
Kelin Xia, Guo-Wei WeiAbstract
Persistent homology has emerged as a popular technique for the topological simplification of big data, including biomolecular data. Multidimensional persistence bears considerable promise to bridge the gap between geometry and topology. However, its practical and robust construction has been a challenge. We introduce two families of multidimensional persistence, namely pseudo-multidimensional persistence and multiscale multidimensional persistence. The former is generated via the repeated applications of persistent homology filtration to high dimensional data, such as results from molecular dynamics or partial differential equations. The latter is constructed via isotropic and anisotropic scales that create new simiplicial complexes and associated topological spaces. The utility, robustness and efficiency of the proposed topological methods are demonstrated via protein folding, protein flexibility analysis, the topological denoising of cryo-electron microscopy data, and the scale dependence of nano particles. Topological transition between partial folded and unfolded proteins has been observed in multidimensional persistence. The separation between noise topological signatures and molecular topological fingerprints is achieved by the Laplace-Beltrami flow. The multiscale multidimensional persistent homology reveals relative local features in Betti-0 invariants and the relatively global characteristics of Betti-1 and Betti-2 invariants. -
A Topological Measurement of Protein Compressibility (2015)
Marcio Gameiro, Yasuaki Hiraoka, Shunsuke Izumi, Miroslav Kramar, Konstantin Mischaikow, Vidit NandaAbstract
In this paper we partially clarify the relation between the compressibility of a protein and its molecular geometric structure. To identify and understand the relevant topological features within a given protein, we model its molecule as an alpha filtration and hence obtain multi-scale insight into the structure of its tunnels and cavities. The persistence diagrams of this alpha filtration capture the sizes and robustness of such tunnels and cavities in a compact and meaningful manner. From these persistence diagrams, we extract a measure of compressibility derived from those topological features whose relevance is suggested by physical and chemical properties. Due to recent advances in combinatorial topology, this measure is efficiently and directly computable from information found in the Protein Data Bank (PDB). Our main result establishes a clear linear correlation between the topological measure and the experimentally-determined compressibility of most proteins for which both PDB information and experimental compressibility data are available. Finally, we establish that both the topological measurement and the linear correlation are stable with respect to small perturbations in the input data, such as those arising from experimental errors in compressibility and X-ray crystallography experiments. -
Persistent Brain Network Homology From the Perspective of Dendrogram (2012)
Hyekyoung Lee, Hyejin Kang, Moo K. Chung, Bung-Nyun Kim, Dong Soo LeeAbstract
The brain network is usually constructed by estimating the connectivity matrix and thresholding it at an arbitrary level. The problem with this standard method is that we do not have any generally accepted criteria for determining a proper threshold. Thus, we propose a novel multiscale framework that models all brain networks generated over every possible threshold. Our approach is based on persistent homology and its various representations such as the Rips filtration, barcodes, and dendrograms. This new persistent homological framework enables us to quantify various persistent topological features at different scales in a coherent manner. The barcode is used to quantify and visualize the evolutionary changes of topological features such as the Betti numbers over different scales. By incorporating additional geometric information to the barcode, we obtain a single linkage dendrogram that shows the overall evolution of the network. The difference between the two networks is then measured by the Gromov-Hausdorff distance over the dendrograms. As an illustration, we modeled and differentiated the FDG-PET based functional brain networks of 24 attention-deficit hyperactivity disorder children, 26 autism spectrum disorder children, and 11 pediatric control subjects. -
Persistence-Based Hough Transform for Line Detection (2025)
Johannes Ferner, Stefan Huber, Saverio Messineo, Angel Pop, Martin UrayAbstract
The Hough transform is a popular and classical technique in computer vision for the detection of lines (or more general objects). It maps a pixel into a dual space -- the Hough space: each pixel is mapped to the set of lines through this pixel, which forms a curve in Hough space. The detection of lines then becomes a voting process to find those lines that received many votes by pixels. However, this voting is done by thresholding, which is susceptible to noise and other artifacts. In this work, we present an alternative voting technique to detect peaks in the Hough space based on persistent homology, which very naturally addresses limitations of simple thresholding. Experiments on synthetic data show that our method significantly outperforms the original method, while also demonstrating enhanced robustness. This work seeks to inspire future research in two key directions. First, we highlight the untapped potential of Topological Data Analysis techniques and advocate for their broader integration into existing methods, including well-established ones. Secondly, we initiate a discussion on the mathematical stability of the Hough transform, encouraging exploration of mathematically grounded improvements to enhance its robustness. -
Using Persistent Homology and Dynamical Distances to Analyze Protein Binding (2016)
Violeta Kovacev-Nikolic, Peter Bubenik, Dragan Nikolić, Giseon HeoAbstract
Persistent homology captures the evolution of topological features of a model as a parameter changes. The most commonly used summary statistics of persistent homology are the barcode and the persistence diagram. Another summary statistic, the persistence landscape, was recently introduced by Bubenik. It is a functional summary, so it is easy to calculate sample means and variances, and it is straightforward to construct various test statistics. Implementing a permutation test we detect conformational changes between closed and open forms of the maltose-binding protein, a large biomolecule consisting of 370 amino acid residues. Furthermore, persistence landscapes can be applied to machine learning methods. A hyperplane from a support vector machine shows the clear separation between the closed and open proteins conformations. Moreover, because our approach captures dynamical properties of the protein our results may help in identifying residues susceptible to ligand binding; we show that the majority of active site residues and allosteric pathway residues are located in the vicinity of the most persistent loop in the corresponding filtered Vietoris-Rips complex. This finding was not observed in the classical anisotropic network model. -
Using Persistent Homology as Preprocessing of Early Warning Signals for Critical Transition in Flood (2021)
Syed Mohamad Sadiq Syed Musa, Mohd Salmi Md Noorani, Fatimah Abdul Razak, Munira Ismail, Mohd Almie Alias, Saiful Izzuan HussainAbstract
Flood early warning systems (FLEWSs) contribute remarkably to reducing economic and life losses during a flood. The theory of critical slowing down (CSD) has been successfully used as a generic indicator of early warning signals in various fields. A new tool called persistent homology (PH) was recently introduced for data analysis. PH employs a qualitative approach to assess a data set and provide new information on the topological features of the data set. In the present paper, we propose the use of PH as a preprocessing step to achieve a FLEWS through CSD. We test our proposal on water level data of the Kelantan River, which tends to flood nearly every year. The results suggest that the new information obtained by PH exhibits CSD and, therefore, can be used as a signal for a FLEWS. Further analysis of the signal, we manage to establish an early warning signal for ten of the twelve flood events recorded in the river; the two other events are detected on the first day of the flood. Finally, we compare our results with those of a FLEWS constructed directly from water level data and find that FLEWS via PH creates fewer false alarms than the conventional technique. -
Classification of COVID-19 via Homology of CT-SCAN (2021)
Sohail Iqbal, H. Fareed Ahmed, Talha Qaiser, Muhammad Imran Qureshi, Nasir RajpootAbstract
In this worldwide spread of SARS-CoV-2 (COVID-19) infection, it is of utmost importance to detect the disease at an early stage especially in the hot spots of this epidemic. There are more than 110 Million infected cases on the globe, sofar. Due to its promptness and effective results computed tomography (CT)-scan image is preferred to the reverse-transcription polymerase chain reaction (RT-PCR). Early detection and isolation of the patient is the only possible way of controlling the spread of the disease. Automated analysis of CT-Scans can provide enormous support in this process. In this article, We propose a novel approach to detect SARS-CoV-2 using CT-scan images. Our method is based on a very intuitive and natural idea of analyzing shapes, an attempt to mimic a professional medic. We mainly trace SARS-CoV-2 features by quantifying their topological properties. We primarily use a tool called persistent homology, from Topological Data Analysis (TDA), to compute these topological properties. We train and test our model on the "SARS-CoV-2 CT-scan dataset" i̧tep\soares2020sars\, an open-source dataset, containing 2,481 CT-scans of normal and COVID-19 patients. Our model yielded an overall benchmark F1 score of \$99.42\% \$, accuracy \$99.416\%\$, precision \$99.41\%\$, and recall \$99.42\%\$. The TDA techniques have great potential that can be utilized for efficient and prompt detection of COVID-19. The immense potential of TDA may be exploited in clinics for rapid and safe detection of COVID-19 globally, in particular in the low and middle-income countries where RT-PCR labs and/or kits are in a serious crisis. -
Steinhaus Filtration and Stable Paths in the Mapper (2020)
Dustin L. Arendt, Matthew Broussard, Bala Krishnamoorthy, Nathaniel SaulAbstract
Two central concepts from topological data analysis are persistence and the Mapper construction. Persistence employs a sequence of objects built on data called a filtration. A Mapper produces insightful summaries of data, and has found widespread applications in diverse areas. We define a new filtration called the cover filtration built from a single cover based on a generalized Steinhaus distance, which is a generalization of Jaccard distance. We prove a stability result: the cover filtrations of two covers are \$\alpha/m\$ interleaved, where \$\alpha\$ is a bound on bottleneck distance between covers and \$m\$ is the size of smallest set in either cover. We also show our construction is equivalent to the Cech filtration under certain settings, and the Vietoris-Rips filtration completely determines the cover filtration in all cases. We then develop a theory for stable paths within this filtration. Unlike standard results on stability in topological persistence, our definition of path stability aligns exactly with the above result on stability of cover filtration. We demonstrate how our framework can be employed in a variety of applications where a metric is not obvious but a cover is readily available. First we present a new model for recommendation systems using cover filtration. For an explicit example, stable paths identified on a movies data set represent sequences of movies constituting gentle transitions from one genre to another. As a second application in explainable machine learning, we apply the Mapper for model induction, providing explanations in the form of paths between subpopulations. Stable paths in the Mapper from a supervised machine learning model trained on the FashionMNIST data set provide improved explanations of relationships between subpopulations of images. -
A Proof-of-Concept Investigation Into Predicting Follicular Carcinoma on Ultrasound Using Topological Data Analysis and Radiomics (2025)
Andrew M. Thomas, Ann C. Lin, Grace Deng, Yuchen Xu, Gustavo Fernandez Ranvier, Aida Taye, David S. Matteson, Denise LeeAbstract
Background Sonographic risk patterns identified in established risk stratification systems (RSS) may not accurately stratify follicular carcinoma from adenoma, which share many similar US characteristics. The purpose of this study is to investigate the performance of a multimodal machine learning model utilizing radiomics and topological data analysis (TDA) to predict malignancy in follicular thyroid neoplasms on ultrasound. Patients & Methods This is a retrospective study of patients who underwent thyroidectomy with pathology confirmed follicular adenoma or carcinoma at a single academic medical center between 2010 and 2022. Features derived from radiomics and TDA were calculated from processed ultrasound images and high-dimensional features in each modality were projected onto their first two principal components. Logistic regression with L2 penalty was used to predict malignancy and performance was evaluated using leave-one-out cross-validation and area under the curve (AUC). Results Patients with follicular adenomas (n = 7) and follicular carcinomas (n = 11) with available imaging were included. The best multimodal model achieved an AUC of 0.88 (95% CI: [0.85, 1]), whereas the best radiomics model achieved an AUC of 0.68 (95% CI: [0.61, 0.84]). Conclusions We demonstrate that inclusion of topological features yields strong improvement over radiomics-based features alone in the prediction of follicular carcinoma on ultrasound. Despite low volume data, the TDA features explicitly capture shape information that likely augments performance of the multimodal machine learning model. This approach suggests that a quantitative based US RSS may contribute to the preoperative prediction of follicular carcinoma. -
Weighted Persistent Homology for Osmolyte Molecular Aggregation and Hydrogen-Bonding Network Analysis (2020)
D. Vijay Anand, Zhenyu Meng, Kelin Xia, Yuguang MuAbstract
It has long been observed that trimethylamine N-oxide (TMAO) and urea demonstrate dramatically different properties in a protein folding process. Even with the enormous theoretical and experimental research work on these two osmolytes, various aspects of their underlying mechanisms still remain largely elusive. In this paper, we propose to use the weighted persistent homology to systematically study the osmolytes molecular aggregation and their hydrogen-bonding network from a local topological perspective. We consider two weighted models, i.e., localized persistent homology (LPH) and interactive persistent homology (IPH). Boltzmann persistent entropy (BPE) is proposed to quantitatively characterize the topological features from LPH and IPH, together with persistent Betti number (PBN). More specifically, from the localized persistent homology models, we have found that TMAO and urea have very different local topology. TMAO is found to exhibit a local network structure. With the concentration increase, the circle elements in these networks show a clear increase in their total numbers and a decrease in their relative sizes. In contrast, urea shows two types of local topological patterns, i.e., local clusters around 6 Å and a few global circle elements at around 12 Å. From the interactive persistent homology models, it has been found that our persistent radial distribution function (PRDF) from the global-scale IPH has same physical properties as the traditional radial distribution function. Moreover, PRDFs from the local-scale IPH can also be generated and used to characterize the local interaction information. Other than the clear difference of the first peak value of PRDFs at filtration size 4 Å, TMAO and urea also shows very different behaviors at the second peak region from filtration size 5 Å to 10 Å. These differences are also reflected in the PBNs and BPEs of the local-scale IPH. These localized topological information has never been revealed before. Since graphs can be transferred into simplicial complexes by the clique complex, our weighted persistent homology models can be used in the analysis of various networks and graphs from any molecular structures and aggregation systems. -
Unexpected Topology of the Temperature Fluctuations in the Cosmic Microwave Background (2019)
Pratyush Pranav, Robert J. Adler, Thomas Buchert, Herbert Edelsbrunner, Bernard J. T. Jones, Armin Schwartzman, Hubert Wagner, Rien van de WeygaertAbstract
We study the topology generated by the temperature fluctuations of the cosmic microwave background (CMB) radiation, as quantified by the number of components and holes, formally given by the Betti numbers, in the growing excursion sets. We compare CMB maps observed by the Planck satellite with a thousand simulated maps generated according to the ΛCDM paradigm with Gaussian distributed fluctuations. The comparison is multi-scale, being performed on a sequence of degraded maps with mean pixel separation ranging from 0.05 to 7.33°. The survey of the CMB over 𝕊2 is incomplete due to obfuscation effects by bright point sources and other extended foreground objects like our own galaxy. To deal with such situations, where analysis in the presence of “masks” is of importance, we introduce the concept of relative homology. The parametric χ2-test shows differences between observations and simulations, yielding p-values at percent to less than permil levels roughly between 2 and 7°, with the difference in the number of components and holes peaking at more than 3σ sporadically at these scales. The highest observed deviation between the observations and simulations for b0 and b1 is approximately between 3σ and 4σ at scales of 3–7°. There are reports of mildly unusual behaviour of the Euler characteristic at 3.66° in the literature, computed from independent measurements of the CMB temperature fluctuations by Planck’s predecessor, the Wilkinson Microwave Anisotropy Probe (WMAP) satellite. The mildly anomalous behaviour of the Euler characteristic is phenomenologically related to the strongly anomalous behaviour of components and holes, or the zeroth and first Betti numbers, respectively. Further, since these topological descriptors show consistent anomalous behaviour over independent measurements of Planck and WMAP, instrumental and systematic errors may be an unlikely source. These are also the scales at which the observed maps exhibit low variance compared to the simulations, and approximately the range of scales at which the power spectrum exhibits a dip with respect to the theoretical model. Non-parametric tests show even stronger differences at almost all scales. Crucially, Gaussian simulations based on power-spectrum matching the characteristics of the observed dipped power spectrum are not able to resolve the anomaly. Understanding the origin of the anomalies in the CMB, whether cosmological in nature or arising due to late-time effects, is an extremely challenging task. Regardless, beyond the trivial possibility that this may still be a manifestation of an extreme Gaussian case, these observations, along with the super-horizon scales involved, may motivate the study of primordial non-Gaussianity. Alternative scenarios worth exploring may be models with non-trivial topology, including topological defect models.