🍩 Database of Original & Non-Theoretical Uses of Topology
(found 10 matches in 0.011311s)
-
-
Fractal Dimension Estimation With Persistent Homology: A Comparative Study (2020)
Jonathan Jaquette, Benjamin SchweinhartAbstract
We propose that the recently defined persistent homology dimensions are a practical tool for fractal dimension estimation of point samples. We implement an algorithm to estimate the persistent homology dimension, and compare its performance to classical methods to compute the correlation and box-counting dimensions in examples of self-similar fractals, chaotic attractors, and an empirical dataset. The performance of the 0-dimensional persistent homology dimension is comparable to that of the correlation dimension, and better than box-counting.Community Resources
-
Understanding Flow Features in Drying Droplets via Euler Characteristic Surfaces—A Topological Tool (2020)
A. Roy, R. A. I. Haque, A. J. Mitra, M. Dutta Choudhury, S. Tarafdar, T. DuttaAbstract
In this paper, we propose a mathematical picture of flow in a drying multiphase droplet. The system studied consists of a suspension of microscopic polystyrene beads in water. The time development of the drying process is described by defining the “Euler characteristic surface,” which provides a multiscale topological map of this dynamical system. A novel method is adopted to analyze the images extracted from experimental video sequences. Experimental image data are converted to binary data through appropriate Gaussian filters and optimal thresholding and analyzed using the Euler characteristic determined on a hexagonal lattice. In order to do a multiscale analysis of the extracted image, we introduce the concept of Euler characteristic at a specific scale r > 0. This multiscale time evolution of the connectivity information on aggregates of polysterene beads in water is summarized in a Euler characteristic surface and, subsequently, in a Euler characteristic level curve plot. We introduce a metric between Euler characteristic surfaces as a possible similarity measure between two flow situations. The constructions proposed by us are used to interpret flow patterns (and their stability) generated on the upper surface of the drying droplet interface. The philosophy behind the topological tools developed in this work is to produce low-dimensional signatures of dynamical systems, which may be used to efficiently summarize and distinguish topological information in various types of flow situations. -
Characterizing Fluid Dynamical Systems Using Euler Characteristic Surface and Euler Metric (2023)
A. Roy, R. A. I. Haque, A. J. Mitra, S. Tarafdar, T. DuttaAbstract
Euler characteristic ( χ ), a topological invariant, helps to understand the topology of a network or complex. We demonstrate that the multi-scale topological information of dynamically evolving fluid flow systems can be crystallized into their Euler characteristic surfaces χ s ( r , t ). Furthermore, we demonstrate the Euler Metric (EM), introduced by the authors, can be utilized to identify the stability regime of a given flow pattern, besides distinguishing between different flow systems. The potential of the Euler characteristic surface and the Euler metric have been demonstrated first on analyzing a simulated deterministic dynamical system before being applied to analyze experimental flow patterns that develop in micrometer sized drying droplets. -
Euler Characteristic Surfaces: A Stable Multiscale Topological Summary of Time Series Data (2024)
Anamika Roy, Atish J. Mitra, Tapati DuttaAbstract
We present Euler Characteristic Surfaces as a multiscale spatiotemporal topological summary of time series data encapsulating the topology of the system at different time instants and length scales. Euler Characteristic Surfaces with an appropriate metric is used to quantify stability and locate critical changes in a dynamical system with respect to variations in a parameter, while being substantially computationally cheaper than available alternate methods such as persistent homology. The stability of the construction is demonstrated by a quantitative comparison bound with persistent homology, and a quantitative stability bound under small changes in time is established. The proposed construction is used to analyze two different kinds of simulated disordered flow situations. -
Topological Detection of Phenomenological Bifurcations With Unreliable Kernel Density Estimates (2024)
Sunia Tanweer, Firas A. KhasawnehAbstract
Phenomenological (P-type) bifurcations are qualitative changes in stochastic dynamical systems whereby the stationary probability density function (PDF) changes its topology. The current state of the art for detecting these bifurcations requires reliable kernel density estimates computed from an ensemble of system realizations. However, in several real world signals such as Big Data, only a single system realization is available—making it impossible to estimate a reliable kernel density. This study presents an approach for detecting P-type bifurcations using unreliable density estimates. The approach creates an ensemble of objects from Topological Data Analysis (TDA) called persistence diagrams from the system’s sole realization and statistically analyzes the resulting set. We compare several methods for replicating the original persistence diagram including Gibbs point process modelling, Pairwise Interaction Point Modelling, and subsampling. We show that for the purpose of predicting a bifurcation, the simple method of subsampling exceeds the other two methods of point process modelling in performance. -
Detecting Bifurcations in Dynamical Systems With CROCKER Plots (2022)
İsmail Güzel, Elizabeth Munch, Firas A. KhasawnehAbstract
Existing tools for bifurcation detection from signals of dynamical systems typically are either limited to a special class of systems or they require carefully chosen input parameters and a significant expertise to interpret the results. Therefore, we describe an alternative method based on persistent homology—a tool from topological data analysis—that utilizes Betti numbers and CROCKER plots. Betti numbers are topological invariants of topological spaces, while the CROCKER plot is a coarsened but easy to visualize data representation of a one-parameter varying family of persistence barcodes. The specific bifurcations we investigate are transitions from periodic to chaotic behavior or vice versa in a one-parameter collection of differential equations. We validate our methods using numerical experiments on ten dynamical systems and contrast the results with existing tools that use the maximum Lyapunov exponent. We further prove the relationship between the Wasserstein distance to the empty diagram and the norm of the Betti vector, which shows that an even more simplified version of the information has the potential to provide insight into the bifurcation parameter. The results show that our approach reveals more information about the shape of the periodic attractor than standard tools, and it has more favorable computational time in comparison with the Rösenstein algorithm for computing the maximum Lyapunov exponent. -
A Topological Framework for Identifying Phenomenological Bifurcations in Stochastic Dynamical Systems (2024)
Sunia Tanweer, Firas A. Khasawneh, Elizabeth Munch, Joshua R. TempelmanAbstract
Changes in the parameters of dynamical systems can cause the state of the system to shift between different qualitative regimes. These shifts, known as bifurcations, are critical to study as they can indicate when the system is about to undergo harmful changes in its behavior. In stochastic dynamical systems, there is particular interest in P-type (phenomenological) bifurcations, which can include transitions from a monostable state to multi-stable states, the appearance of stochastic limit cycles and other features in the probability density function (PDF) of the system’s state. Current practices are limited to systems with small state spaces, cannot detect all possible behaviors of the PDFs and mandate human intervention for visually identifying the change in the PDF. In contrast, this study presents a new approach based on Topological Data Analysis that uses superlevel persistence to mathematically quantify P-type bifurcations in stochastic systems through a “homological bifurcation plot”—which shows the changing ranks of 0th and 1st homology groups, through Betti vectors. Using these plots, we demonstrate the successful detection of P-bifurcations on the stochastic Duffing, Raleigh-Vander Pol and Quintic Oscillators given their analytical PDFs, and elaborate on how to generate an estimated homological bifurcation plot given a kernel density estimate (KDE) of these systems by employing a tool for finding topological consistency between PDFs and KDEs. -
A Topological Machine Learning Pipeline for Classification (2022)
Francesco Conti, Davide Moroni, Maria Antonietta PascaliAbstract
In this work, we develop a pipeline that associates Persistence Diagrams to digital data via the most appropriate filtration for the type of data considered. Using a grid search approach, this pipeline determines optimal representation methods and parameters. The development of such a topological pipeline for Machine Learning involves two crucial steps that strongly affect its performance: firstly, digital data must be represented as an algebraic object with a proper associated filtration in order to compute its topological summary, the Persistence Diagram. Secondly, the persistence diagram must be transformed with suitable representation methods in order to be introduced in a Machine Learning algorithm. We assess the performance of our pipeline, and in parallel, we compare the different representation methods on popular benchmark datasets. This work is a first step toward both an easy and ready-to-use pipeline for data classification using persistent homology and Machine Learning, and to understand the theoretical reasons why, given a dataset and a task to be performed, a pair (filtration, topological representation) is better than another. -
Stable Signatures for Dynamic Graphs and Dynamic Metric Spaces via Zigzag Persistence (2018)
Woojin Kim, Facundo MemoliAbstract
When studying flocking/swarming behaviors in animals one is interested in quantifying and comparing the dynamics of the clustering induced by the coalescence and disbanding of animals in different groups. In a similar vein, studying the dynamics of social networks leads to the problem of characterizing groups/communities as they form and disperse throughout time. Motivated by this, we study the problem of obtaining persistent homology based summaries of time-dependent data. Given a finite dynamic graph (DG), we first construct a zigzag persistence module arising from linearizing the dynamic transitive graph naturally induced from the input DG. Based on standard results, we then obtain a persistence diagram or barcode from this zigzag persistence module. We prove that these barcodes are stable under perturbations in the input DG under a suitable distance between DGs that we identify. More precisely, our stability theorem can be interpreted as providing a lower bound for the distance between DGs. Since it relies on barcodes, and their bottleneck distance, this lower bound can be computed in polynomial time from the DG inputs. Since DGs can be given rise by applying the Rips functor (with a fixed threshold) to dynamic metric spaces, we are also able to derive related stable invariants for these richer class of dynamic objects. Along the way, we propose a summarization of dynamic graphs that captures their time-dependent clustering features which we call formigrams. These set-valued functions generalize the notion of dendrogram, a prevalent tool for hierarchical clustering. In order to elucidate the relationship between our distance between two DGs and the bottleneck distance between their associated barcodes, we exploit recent advances in the stability of zigzag persistence due to Botnan and Lesnick, and to Bjerkevik.