🍩 Database of Original & Non-Theoretical Uses of Topology

(found 8 matches in 0.002037s)
  1. Differentiable Euler Characteristic Transforms for Shape Classification (2023)

    Ernst Röell, Bastian Rieck
    Abstract The _Euler Characteristic Transform_ (ECT) is a powerful invariant, combining geometrical and topological characteristics of shapes and graphs. However, the ECT was hitherto unable to learn task-specific representations. We overcome this issue and develop a novel computational layer that enables learning the ECT in an end-to-end fashion. Our method, the _Differentiable Euler Characteristic Transform_ (DECT) is fast and computationally efficient, while exhibiting performance on a par with more complex models in both graph and point cloud classification tasks. Moreover, we show that this seemingly simple statistic provides the same topological expressivity as more complex topological deep learning layers.
  2. Filtration Surfaces for Dynamic Graph Classification (2023)

    Franz Srambical, Bastian Rieck
    Abstract Existing approaches for classifying dynamic graphs either lift graph kernels to the temporal domain, or use graph neural networks (GNNs). However, current baselines have scalability issues, cannot handle a changing node set, or do not take edge weight information into account. We propose filtration surfaces, a novel method that is scalable and flexible, to alleviate said restrictions. We experimentally validate the efficacy of our model and show that filtration surfaces outperform previous state-of-the-art baselines on datasets that rely on edge weight information. Our method does so while being either completely parameter-free or having at most one parameter, and yielding the lowest overall standard deviation among similarly scalable methods.
  3. Simplicial Representation Learning With Neural \$K\$-Forms (2023)

    Kelly Maggs, Celia Hacker, Bastian Rieck
    Abstract Geometric deep learning extends deep learning to incorporate information about the geometry and topology data, especially in complex domains like graphs. Despite the popularity of message passing in this field, it has limitations such as the need for graph rewiring, ambiguity in interpreting data, and over-smoothing. In this paper, we take a different approach, focusing on leveraging geometric information from simplicial complexes embedded in \$\mathbb\R\\textasciicircumn\$ using node coordinates. We use differential \$k\$-forms in \$\mathbb\R\\textasciicircumn\$ to create representations of simplices, offering interpretability and geometric consistency without message passing. This approach also enables us to apply differential geometry tools and achieve universal approximation. Our method is efficient, versatile, and applicable to various input complexes, including graphs, simplicial complexes, and cell complexes. It outperforms existing message passing neural networks in harnessing information from geometrical graphs with node features serving as coordinates.
  4. Mapping the Multiverse of Latent Representations (2024)

    Jeremy Wayland, Corinna Coupette, Bastian Rieck
    Abstract Echoing recent calls to counter reliability and robustness concerns in machine learning via multiverse analysis, we present PRESTO, a principled framework for mapping the multiverse of machine-learning models that rely on latent representations. Although such models enjoy widespread adoption, the variability in their embeddings remains poorly understood, resulting in unnecessary complexity and untrustworthy representations. Our framework uses persistent homology to characterize the latent spaces arising from different combinations of diverse machine-learning methods, (hyper)parameter configurations, and datasets, allowing us to measure their pairwise (dis)similarity and statistically reason about their distributions. As we demonstrate both theoretically and empirically, our pipeline preserves desirable properties of collections of latent representations, and it can be leveraged to perform sensitivity analysis, detect anomalous embeddings, or efficiently and effectively navigate hyperparameter search spaces.
  5. Position: Topological Deep Learning Is the New Frontier for Relational Learning (2024)

    Theodore Papamarkou, Tolga Birdal, Michael M. Bronstein, Gunnar E. Carlsson, Justin Curry, Yue Gao, Mustafa Hajij, Roland Kwitt, Pietro Lio, Paolo Di Lorenzo, Vasileios Maroulas, Nina Miolane, Farzana Nasrin, Karthikeyan Natesan Ramamurthy, Bastian Rieck, Simone Scardapane, Michael T. Schaub, Petar Veličković, Bei Wang, Yusu Wang, Guowei Wei, Ghada Zamzmi
    Abstract Topological deep learning (TDL) is a rapidly evolving field that uses topological features to understand and design deep learning models. This paper posits that TDL is the new frontier for relational learning. TDL may complement graph representation learning and geometric deep learning by incorporating topological concepts, and can thus provide a natural choice for various machine learning settings. To this end, this paper discusses open problems in TDL, ranging from practical benefits to theoretical foundations. For each problem, it outlines potential solutions and future research opportunities. At the same time, this paper serves as an invitation to the scientific community to actively participate in TDL research to unlock the potential of this emerging field.
  6. Topological Data Analysis for Arrhythmia Detection Through Modular Neural Networks (2020)

    Meryll Dindin, Yuhei Umeda, Frederic Chazal
    Abstract This paper presents an innovative and generic deep learning approach to monitor heart conditions from ECG signals. We focus our attention on both the detection and classification of abnormal heartbeats, known as arrhythmia. We strongly insist on generalization throughout the construction of a shallow deep-learning model that turns out to be effective for new unseen patient. The novelty of our approach relies on the use of topological data analysis to deal with individual differences. We show that our structure reaches the performances of the state-of-the-art methods for both arrhythmia detection and classification.
  7. Fast and Accurate Tumor Segmentation of Histology Images Using Persistent Homology and Deep Convolutional Features (2019)

    Talha Qaiser, Yee-Wah Tsang, Daiki Taniyama, Naoya Sakamoto, Kazuaki Nakane, David Epstein, Nasir Rajpoot
    Abstract Tumor segmentation in whole-slide images of histology slides is an important step towards computer-assisted diagnosis. In this work, we propose a tumor segmentation framework based on the novel concept of persistent homology profiles (PHPs). For a given image patch, the homology profiles are derived by efficient computation of persistent homology, which is an algebraic tool from homology theory. We propose an efficient way of computing topological persistence of an image, alternative to simplicial homology. The PHPs are devised to distinguish tumor regions from their normal counterparts by modeling the atypical characteristics of tumor nuclei. We propose two variants of our method for tumor segmentation: one that targets speed without compromising accuracy and the other that targets higher accuracy. The fast version is based on a selection of exemplar image patches from a convolution neural network (CNN) and patch classification by quantifying the divergence between the PHPs of exemplars and the input image patch. Detailed comparative evaluation shows that the proposed algorithm is significantly faster than competing algorithms while achieving comparable results. The accurate version combines the PHPs and high-level CNN features and employs a multi-stage ensemble strategy for image patch labeling. Experimental results demonstrate that the combination of PHPs and CNN features outperform competing algorithms. This study is performed on two independently collected colorectal datasets containing adenoma, adenocarcinoma, signet, and healthy cases. Collectively, the accurate tumor segmentation produces the highest average patch-level F1-score, as compared with competing algorithms, on malignant and healthy cases from both the datasets. Overall the proposed framework highlights the utility of persistent homology for histopathology image analysis.