🍩 Database of Original & Non-Theoretical Uses of Topology

(found 7 matches in 0.001617s)
  1. Pore Configuration Landscape of Granular Crystallization (2017)

    Mohammad Saadatfar, Hiroshi Takeuchi, Vanessa Robins, Nicolas Francois, Yisuaki Hiraoka
    Abstract Emergence and growth of crystalline domains in granular media remains under-explored. Here, the authors analyse tomographic snapshots from partially recrystallized packings of spheres using persistent homology and find agreement with proposed transitions based on continuous deformation of octahedral and tetrahedral voids.
  2. Unsupervised Topological Learning for Identification of Atomic Structures (2022)

    Sébastien Becker, Emilie Devijver, Rémi Molinier, Noël Jakse
    Abstract We propose an unsupervised learning methodology with descriptors based on topological data analysis (TDA) concepts to describe the local structural properties of materials at the atomic scale. Based only on atomic positions and without a priori knowledge, our method allows for an autonomous identification of clusters of atomic structures through a Gaussian mixture model. We apply successfully this approach to the analysis of elemental Zr in the crystalline and liquid states as well as homogeneous nucleation events under deep undercooling conditions. This opens the way to deeper and autonomous study of complex phenomena in materials at the atomic scale.
  3. Unsupervised Topological Learning Approach of Crystal Nucleation in Pure Tantalum (2021)

    Sébastien Becker, Emilie Devijver, Rémi Molinier, Noël Jakse
    Abstract Nucleation phenomena commonly observed in our every day life are of fundamental, technological and societal importance in many areas, but some of their most intimate mechanisms remain however to be unraveled. Crystal nucleation, the early stages where the liquid-to-solid transition occurs upon undercooling, initiates at the atomic level on nanometer length and sub-picoseconds time scales and involves complex multidimensional mechanisms with local symmetry breaking that can hardly be observed experimentally in the very details. To reveal their structural features in simulations without a priori, an unsupervised learning approach founded on topological descriptors loaned from persistent homology concepts is proposed. Applied here to a monatomic metal, namely Tantalum (Ta), it shows that both translational and orientational ordering always come into play simultaneously when homogeneous nucleation starts in regions with low five-fold symmetry.
  4. Topological Extraction and Tracking of Defects in Crystal Structures (2011)

    Sebastian Grottel, Carlos A. Dietrich, João L. D. Comba, Thomas Ertl
    Abstract Interfaces between materials with different mechanical properties play an important role in technical applications. Nowadays molecular dynamics simulations are used to observe the behavior of such compound materials at the atomic level. Due to different atom crystal sizes, dislocations in the atom crystal structure occur once external forces are applied, and it has been observed that studying the change of thesedislocations can provide further understanding of macroscopic attributes like elasticity and plasticity. Standard visualization techniques such as the rendering of individual atoms work for 2D data or sectional views; however, visualizingdislocations in 3D using such methods usually fail due to occlusion and clutter. In this work we propose to extract and visualize the structure ofdislocations, which summarizes the commonly employed filtered atomistic renderings into a concise representation. The benefits of our approach are clearer images while retaining relevant data and easier visual tracking of topological changes over time.
  5. Tenfold Topology of Crystals (2020)

    Eyal Cornfeld, Shachar Carmeli
    Abstract The celebrated tenfold-way of Altland-Zirnbauer symmetry classes discern any quantum system by its pattern of non-spatial symmetries. It lays at the core of the periodic table of topological insulators and superconductors which provided a complete classification of weakly-interacting electrons' non-crystalline topological phases for all symmetry classes. Over recent years, a plethora of topological phenomena with diverse surface states has been discovered in crystalline materials. In this paper, we obtain an exhaustive classification of topologically distinct groundstates as well as topological phases with anomalous surface states of crystalline topological insulators and superconductors for key space-groups, layer-groups, and rod-groups. This is done in a unified manner for the full tenfold-way of Altland-Zirnbauer non-spatial symmetry classes. We establish a comprehensive paradigm that harnesses the modern mathematical framework of equivariant spectra; it allows us to obtain results applicable to generic topological classification problems. In particular, this paradigm provides efficient computational tools that enable an inherently unified treatment of the full tenfold-way.
  6. Spatial Applications of Topological Data Analysis: Cities, Snowflakes, Random Structures, and Spiders Spinning Under the Influence (2020)

    Michelle Feng, Mason A. Porter
    Abstract Spatial networks are ubiquitous in social, geographic, physical, and biological applications. To understand their large-scale structure, it is important to develop methods that allow one to directly probe the effects of space on structure and dynamics. Historically, algebraic topology has provided one framework for rigorously and quantitatively describing the global structure of a space, and recent advances in topological data analysis (TDA) have given scholars a new lens for analyzing network data. In this paper, we study a variety of spatial networks --- including both synthetic and natural ones --- using novel topological methods that we recently developed specifically for analyzing spatial networks. We demonstrate that our methods are able to capture meaningful quantities, with specifics that depend on context, in spatial networks and thereby provide useful insights into the structure of those networks, including a novel approach for characterizing them based on their topological structures. We illustrate these ideas with examples of synthetic networks and dynamics on them, street networks in cities, snowflakes, and webs spun by spiders under the influence of various psychotropic substances.
  7. Persistent Homology Analysis of Ion Aggregations and Hydrogen-Bonding Networks (2018)

    Kelin Xia
    Abstract Despite the great advancement of experimental tools and theoretical models, a quantitative characterization of the microscopic structures of ion aggregates and their associated water hydrogen-bonding networks still remains a challenging problem. In this paper, a newly-invented mathematical method called persistent homology is introduced, for the first time, to quantitatively analyze the intrinsic topological properties of ion aggregation systems and hydrogen-bonding networks. The two most distinguishable properties of persistent homology analysis of assembly systems are as follows. First, it does not require a predefined bond length to construct the ion or hydrogen-bonding network. Persistent homology results are determined by the morphological structure of the data only. Second, it can directly measure the size of circles or holes in ion aggregates and hydrogen-bonding networks. To validate our model, we consider two well-studied systems, i.e., NaCl and KSCN solutions, generated from molecular dynamics simulations. They are believed to represent two morphological types of aggregation, i.e., local clusters and extended ion networks. It has been found that the two aggregation types have distinguishable topological features and can be characterized by our topological model very well. Further, we construct two types of networks, i.e., O-networks and H2O-networks, for analyzing the topological properties of hydrogen-bonding networks. It is found that for both models, KSCN systems demonstrate much more dramatic variations in their local circle structures with a concentration increase. A consistent increase of large-sized local circle structures is observed and the sizes of these circles become more and more diverse. In contrast, NaCl systems show no obvious increase of large-sized circles. Instead a consistent decline of the average size of the circle structures is observed and the sizes of these circles become more and more uniform with a concentration increase. As far as we know, these unique intrinsic topological features in ion aggregation systems have never been pointed out before. More importantly, our models can be directly used to quantitatively analyze the intrinsic topological invariants, including circles, loops, holes, and cavities, of any network-like structures, such as nanomaterials, colloidal systems, biomolecular assemblies, among others. These topological invariants cannot be described by traditional graph and network models.