🍩 Database of Original & Non-Theoretical Uses of Topology

(found 3 matches in 0.001174s)
  1. Optimal Topological Cycles and Their Application in Cardiac Trabeculae Restoration (2017)

    Pengxiang Wu, Chao Chen, Yusu Wang, Shaoting Zhang, Changhe Yuan, Zhen Qian, Dimitris Metaxas, Leon Axel
    Abstract In cardiac image analysis, it is important yet challenging to reconstruct the trabeculae, namely, fine muscle columns whose ends are attached to the ventricular walls. To extract these fine structures, traditional image segmentation methods are insufficient. In this paper, we propose a novel method to jointly detect salient topological handles and compute the optimal representations of them. The detected handles are considered hypothetical trabeculae structures. They are further screened using a classifier and are then included in the final segmentation. We show in experiments the significance of our contribution compared with previous standard segmentation methods without topological priors, as well as with previous topological method in which non-optimal representations of topological handles are used.
  2. A Novel Multi-Task Machine Learning Classifier for Rare Disease Patterning Using Cardiac Strain Imaging Data (2024)

    Nanda K. Siva, Yashbir Singh, Quincy A. Hathaway, Partho P. Sengupta, Naveena Yanamala
    Abstract To provide accurate predictions, current machine learning-based solutions require large, manually labeled training datasets. We implement persistent homology (PH), a topological tool for studying the pattern of data, to analyze echocardiography-based strain data and differentiate between rare diseases like constrictive pericarditis (CP) and restrictive cardiomyopathy (RCM). Patient population (retrospectively registered) included those presenting with heart failure due to CP (n = 51), RCM (n = 47), and patients without heart failure symptoms (n = 53). Longitudinal, radial, and circumferential strains/strain rates for left ventricular segments were processed into topological feature vectors using Machine learning PH workflow. In differentiating CP and RCM, the PH workflow model had a ROC AUC of 0.94 (Sensitivity = 92%, Specificity = 81%), compared with the GLS model AUC of 0.69 (Sensitivity = 65%, Specificity = 66%). In differentiating between all three conditions, the PH workflow model had an AUC of 0.83 (Sensitivity = 68%, Specificity = 84%), compared with the GLS model AUC of 0.68 (Sensitivity = 52% and Specificity = 76%). By employing persistent homology to differentiate the “pattern” of cardiac deformations, our machine-learning approach provides reasonable accuracy when evaluating small datasets and aids in understanding and visualizing patterns of cardiac imaging data in clinically challenging disease states.
  3. Nonlinear Dynamic Approaches to Identify Atrial Fibrillation Progression Based on Topological Methods (2019)

    Bahareh Safarbali, Seyed Mohammad Reza Hashemi Golpayegani
    Abstract In recent years, atrial fibrillation (AF) development from paroxysmal to persistent or permanent forms has become an important issue in cardiovascular disorders. Information about AF pattern of presentation (paroxysmal, persistent, or permanent) was useful in the management of algorithms in each category. This management is aimed at reducing symptoms and stopping severe problems associated with AF. AF classification has been based on time duration and episodes until now. In particular, complexity changes in Heart Rate Variation (HRV) may contain clinically relevant signals of imminent systemic dysregulation. A number of nonlinear methods based on phase space and topological properties can give more insight into HRV abnormalities such as fibrillation. Aiming to provide a nonlinear tool to qualitatively classify AF stages, we proposed two geometrical indices (fractal dimension and persistent homology) based on HRV phase space, which can successfully replicate the changes in AF progression. The study population includes 38 lone AF patients and 20 normal subjects, which are collected from the Physio-Bank database. “Time of Life (TOL)” is proposed as a new feature based on the initial and final Čech radius in the persistent homology diagram. A neural network was implemented to prove the effectiveness of both TOL and fractal dimension as classification features. The accuracy of classification performance was 93%. The proposed indices provide a signal representation framework useful to understand the dynamic changes in AF cardiac patterns and to classify normal and pathological rhythms.