🍩 Database of Original & Non-Theoretical Uses of Topology
(found 5 matches in 0.001758s)
-
-
Abnormal Hole Detection in Brain Connectivity by Kernel Density of Persistence Diagram and Hodge Laplacian (2018)
Hyekyoung Lee, Moo K. Chung, Hyejin Kang, Hongyoon Choi, Yu Kyeong Kim, Dong Soo Lee -
Clinical Personal Connectomics Using Hybrid PET/MRI (2019)
Dong Soo Lee -
Possible Clinical Use of Big Data: Personal Brain Connectomics (2018)
Dong Soo LeeAbstract
The biggest data is brain imaging data, which waited for clinical use during the last three decades. Topographic data interpretation prevailed for the first two decades, and only during the last decade, connectivity or connectomics data began to be analyzed properly. Owing to topological data interpretation and timely introduction of likelihood method based on hierarchical generalized linear model, we now foresee the clinical use of personal connectomics for classification and prediction of disease prognosis for brain diseases without any clue by currently available diagnostic methods. -
Persistent Brain Network Homology From the Perspective of Dendrogram (2012)
Hyekyoung Lee, Hyejin Kang, Moo K. Chung, Bung-Nyun Kim, Dong Soo LeeAbstract
The brain network is usually constructed by estimating the connectivity matrix and thresholding it at an arbitrary level. The problem with this standard method is that we do not have any generally accepted criteria for determining a proper threshold. Thus, we propose a novel multiscale framework that models all brain networks generated over every possible threshold. Our approach is based on persistent homology and its various representations such as the Rips filtration, barcodes, and dendrograms. This new persistent homological framework enables us to quantify various persistent topological features at different scales in a coherent manner. The barcode is used to quantify and visualize the evolutionary changes of topological features such as the Betti numbers over different scales. By incorporating additional geometric information to the barcode, we obtain a single linkage dendrogram that shows the overall evolution of the network. The difference between the two networks is then measured by the Gromov-Hausdorff distance over the dendrograms. As an illustration, we modeled and differentiated the FDG-PET based functional brain networks of 24 attention-deficit hyperactivity disorder children, 26 autism spectrum disorder children, and 11 pediatric control subjects.