🍩 Database of Original & Non-Theoretical Uses of Topology

(found 3 matches in 0.001077s)
  1. Atom-Specific Persistent Homology and Its Application to Protein Flexibility Analysis (2020)

    David Bramer, Guo-Wei Wei
    Abstract Recently, persistent homology has had tremendous success in biomolecular data analysis. It works by examining the topological relationship or connectivity of a group of atoms in a molecule at a variety of scales, then rendering a family of topological representations of the molecule. However, persistent homology is rarely employed for the analysis of atomic properties, such as biomolecular flexibility analysis or B-factor prediction. This work introduces atom-specific persistent homology to provide a local atomic level representation of a molecule via a global topological tool. This is achieved through the construction of a pair of conjugated sets of atoms and corresponding conjugated simplicial complexes, as well as conjugated topological spaces. The difference between the topological invariants of the pair of conjugated sets is measured by Bottleneck and Wasserstein metrics and leads to an atom-specific topological representation of individual atomic properties in a molecule. Atom-specific topological features are integrated with various machine learning algorithms, including gradient boosting trees and convolutional neural network for protein thermal fluctuation analysis and B-factor prediction. Extensive numerical results indicate the proposed method provides a powerful topological tool for analyzing and predicting localized information in complex macromolecules.
  2. Persistent Homology and Many-Body Atomic Structure for Medium-Range Order in the Glass (2015)

    Takenobu Nakamura, Yasuaki Hiraoka, Akihiko Hirata, Emerson G. Escolar, Yasumasa Nishiura
    Abstract The characterization of the medium-range (MRO) order in amorphous materials and its relation to the short-range order is discussed. A new topological approach to extract a hierarchical structure of amorphous materials is presented, which is robust against small perturbations and allows us to distinguish it from periodic or random configurations. This method is called the persistence diagram (PD) and introduces scales to many-body atomic structures to facilitate size and shape characterization. We first illustrate the representation of perfect crystalline and random structures in PDs. Then, the MRO in amorphous silica is characterized using the appropriate PD. The PD approach compresses the size of the data set significantly, to much smaller geometrical summaries, and has considerable potential for application to a wide range of materials, including complex molecular liquids, granular materials, and metallic glasses.
  3. Topological Data Analysis for the Characterization of Atomic Scale Morphology From Atom Probe Tomography Images (2018)

    Tianmu Zhang, Scott R. Broderick, Krishna Rajan
    Abstract Atom probe tomography (APT) represents a revolutionary characterization tool for materials that combine atomic imaging with a time-of-flight (TOF) mass spectrometer to provide direct space three-dimensional, atomic scale resolution images of materials with the chemical identities of hundreds of millions of atoms. It involves the controlled removal of atoms from a specimen’s surface by field evaporation and then sequentially analyzing them with a position sensitive detector and TOF mass spectrometer. A paradox in APT is that while on the one hand, it provides an unprecedented level of imaging resolution in three dimensions, it is very difficult to obtain an accurate perspective of morphology or shape outlined by atoms of similar chemistry and microstructure. The origins of this problem are numerous, including incomplete detection of atoms and the complexity of the evaporation fields of atoms at or near interfaces. Hence, unlike scattering techniques such as electron microscopy, interfaces appear diffused, not sharp. This, in turn, makes it challenging to visualize and quantitatively interpret the microstructure at the “meso” scale, where one is interested in the shape and form of the interfaces and their associated chemical gradients. It is here that the application of informatics at the nanoscale and statistical learning methods plays a critical role in both defining the level of uncertainty and helping to make quantitative, statistically objective interpretations where heuristics often dominate. In this chapter, we show how the tools of Topological Data Analysis provide a new and powerful tool in the field of nanoinformatics for materials characterization.