(found 1 matches in 0.00074s)
-
Topological Biomarkers for Real-Time Detection of Epileptic Seizures
(2022)
Ximena Fernández, Diego Mateos
Abstract
Automated seizure detection is a fundamental problem in computational neuroscience towards diagnosis and treatment's improvement of epileptic disease. We propose a real-time computational method for automated tracking and detection of epileptic seizures from raw neurophysiological recordings. Our mechanism is based on the topological analysis of the sliding-window embedding of the time series derived from simultaneously recorded channels. We extract topological biomarkers from the signals via the computation of the persistent homology of time-evolving topological spaces. Remarkably, the proposed biomarkers robustly captures the change in the brain dynamics during the ictal state. We apply our methods in different types of signals including scalp and intracranial EEG and MEG, in patients during interictal and ictal states, showing high accuracy in a range of clinical situations.