🍩 Database of Original & Non-Theoretical Uses of Topology

(found 2 matches in 0.000954s)
  1. Identification of Key Features Using Topological Data Analysis for Accurate Prediction of Manufacturing System Outputs (2017)

    Wei Guo, Ashis G. Banerjee
    Abstract Topological data analysis (TDA) has emerged as one of the most promising approaches to extract insights from high-dimensional data of varying types such as images, point clouds, and meshes, in an unsupervised manner. To the best of our knowledge, here, we provide the first successful application of TDA in the manufacturing systems domain. We apply a widely used TDA method, known as the Mapper algorithm, on two benchmark data sets for chemical process yield prediction and semiconductor wafer fault detection, respectively. The algorithm yields topological networks that capture the intrinsic clusters and connections among the clusters present in the data sets, which are difficult to detect using traditional methods. We select key process variables or features that impact the system outcomes by analyzing the network shapes. We then use predictive models to evaluate the impact of the selected features. Results show that the models achieve at least the same level of high prediction accuracy as with all the process variables, thereby, providing a way to carry out process monitoring and control in a more cost-effective manner.
  2. Toward Automated Prediction of Manufacturing Productivity Based on Feature Selection Using Topological Data Analysis (2016)

    Wei Guo, Ashis G. Banerjee
    Abstract In this paper, we extend the application of topological data analysis (TDA) to the field of manufacturing for the first time to the best of our knowledge. We apply a particular TDA method, known as the Mapper algorithm, on a benchmark chemical processing data set. The algorithm yields a topological network that captures the intrinsic clusters and connections among the clusters present in the high-dimensional data set, which are difficult to detect using traditional methods. We select key process variables or features that impact the final product yield by analyzing the shape of this network. We then use three prediction models to evaluate the impact of the selected features. Results show that the models achieve the same level of high prediction accuracy as with all the process variables, thereby, providing a way to carry out process monitoring and control in a more cost-effective manner.