🍩 Database of Original & Non-Theoretical Uses of Topology

(found 2 matches in 0.001173s)
  1. Go With the Flow? A Large-Scale Analysis of Health Care Delivery Networks in the United States Using Hodge Theory (2021)

    Thomas Gebhart, Xiaojun Fu, Russell J. Funk
    Abstract Health care delivery is a collaborative process, requiring close coordination among networks of providers with specialized expertise. Yet in the United States, care is often spread across multiple disconnected providers (e.g., primary care physicians, specialists), leading to fragmented care delivery networks, and contributing to higher costs and lower quality. While this problem is well known, there are relatively few quantitative tools available for characterizing the dynamics of care delivery networks at scale, thereby inhibiting deeper understanding of care fragmentation and efforts to address it. In this, study, we conduct a large-scale analysis of care delivery networks across the United States using the discrete Hodge decomposition, an emerging method of topological data analysis. Using this technique, we decompose networks of patient flows among physicians into three orthogonal subspaces: gradient (acyclic flow), harmonic (global cyclic flow), and curl (local cyclic flow). We document substantial variation in the relative importance of each subspace, suggesting that there may be systematic differences in the organization of care delivery networks across health care markets. Moreover, we find that the relative importance of each subspace is predictive of local care cost and quality, with outcomes tending to be better with greater curl flow and worse with greater harmonic flow.
  2. The Emergence of Higher-Order Structure in Scientific and Technological Knowledge Networks (2020)

    Thomas Gebhart, Russell J. Funk
    Abstract The growth of science and technology is primarily a recombinative process, wherein new discoveries and inventions are generally built from prior knowledge. While the recent past has seen rapid growth in scientific and technological knowledge, relatively little is known about the manner in which science and technology develop and coalesce knowledge into larger structures that enable or constrain future breakthroughs. Network science has recently emerged as a framework for measuring the structure and dynamics of knowledge. While helpful, these existing approaches struggle to capture the global structural properties of the underlying networks, leading to conflicting observations about the nature of scientific and technological progress. We bridge this methodological gap using tools from algebraic topology to characterize the higher-order structure of knowledge networks in science and technology across scale. We observe rapid and varied growth in the high-dimensional structure in many fields of science and technology, and find this high-dimensional growth coincides with decline in lower-dimensional structure. This higher-order growth in knowledge networks has historically far outpaced the growth in scientific and technological collaboration networks. We also characterize the relationship between higher-order structure and the nature of the science and technology produced within these structural environments and find a positive relationship between the abstractness of language used within fields and increasing high-dimensional structure. We also find a robust relationship between high-dimensional structure and number of metrics for publication success, implying this high-dimensional structure may be linked to discovery and invention.