🍩 Database of Original & Non-Theoretical Uses of Topology

(found 2 matches in 0.001051s)
  1. Topological Phase Estimation Method for Reparameterized Periodic Functions (2022)

    Thomas Bonis, Frédéric Chazal, Bertrand Michel, Wojciech Reise
    Abstract We consider a signal composed of several periods of a periodic function, of which we observe a noisy reparametrisation. The phase estimation problem consists of finding that reparametrisation, and, in particular, the number of observed periods. Existing methods are well-suited to the setting where the periodic function is known, or at least, simple. We consider the case when it is unknown and we propose an estimation method based on the shape of the signal. We use the persistent homology of sublevel sets of the signal to capture the temporal structure of its local extrema. We infer the number of periods in the signal by counting points in the persistence diagram and their multiplicities. Using the estimated number of periods, we construct an estimator of the reparametrisation. It is based on counting the number of sufficiently prominent local minima in the signal. This work is motivated by a vehicle positioning problem, on which we evaluated the proposed method.
  2. Persistence-Based Pooling for Shape Pose Recognition (2016)

    Thomas Bonis, Maks Ovsjanikov, Steve Oudot, Frédéric Chazal
    Abstract In this paper, we propose a novel pooling approach for shape classification and recognition using the bag-of-words pipeline, based on topological persistence, a recent tool from Topological Data Analysis. Our technique extends the standard max-pooling, which summarizes the distribution of a visual feature with a single number, thereby losing any notion of spatiality. Instead, we propose to use topological persistence, and the derived persistence diagrams, to provide significantly more informative and spatially sensitive characterizations of the feature functions, which can lead to better recognition performance. Unfortunately, despite their conceptual appeal, persistence diagrams are difficult to handle, since they are not naturally represented as vectors in Euclidean space and even the standard metric, the bottleneck distance is not easy to compute. Furthermore, classical distances between diagrams, such as the bottleneck and Wasserstein distances, do not allow to build positive definite kernels that can be used for learning. To handle this issue, we provide a novel way to transform persistence diagrams into vectors, in which comparisons are trivial. Finally, we demonstrate the performance of our construction on the Non-Rigid 3D Human Models SHREC 2014 dataset, where we show that topological pooling can provide significant improvements over the standard pooling methods for the shape pose recognition within the bag-of-words pipeline.