🍩 Database of Original & Non-Theoretical Uses of Topology
(found 4 matches in 0.000834s)
-
-
Statistical Topological Data Analysis - A Kernel Perspective (2015)
Roland Kwitt, Stefan Huber, Marc Niethammer, Weili Lin, Ulrich BauerAbstract
We consider the problem of statistical computations with persistence diagrams, a summary representation of topological features in data. These diagrams encode persistent homology, a widely used invariant in topological data analysis. While several avenues towards a statistical treatment of the diagrams have been explored recently, we follow an alternative route that is motivated by the success of methods based on the embedding of probability measures into reproducing kernel Hilbert spaces. In fact, a positive definite kernel on persistence diagrams has recently been proposed, connecting persistent homology to popular kernel-based learning techniques such as support vector machines. However, important properties of that kernel enabling a principled use in the context of probability measure embeddings remain to be explored. Our contribution is to close this gap by proving universality of a variant of the original kernel, and to demonstrate its effective use in two-sample hypothesis testing on synthetic as well as real-world data. -
Persistence-Based Hough Transform for Line Detection (2025)
Johannes Ferner, Stefan Huber, Saverio Messineo, Angel Pop, Martin UrayAbstract
The Hough transform is a popular and classical technique in computer vision for the detection of lines (or more general objects). It maps a pixel into a dual space -- the Hough space: each pixel is mapped to the set of lines through this pixel, which forms a curve in Hough space. The detection of lines then becomes a voting process to find those lines that received many votes by pixels. However, this voting is done by thresholding, which is susceptible to noise and other artifacts. In this work, we present an alternative voting technique to detect peaks in the Hough space based on persistent homology, which very naturally addresses limitations of simple thresholding. Experiments on synthetic data show that our method significantly outperforms the original method, while also demonstrating enhanced robustness. This work seeks to inspire future research in two key directions. First, we highlight the untapped potential of Topological Data Analysis techniques and advocate for their broader integration into existing methods, including well-established ones. Secondly, we initiate a discussion on the mathematical stability of the Hough transform, encouraging exploration of mathematically grounded improvements to enhance its robustness. -
Persistence-Based Hough Transform for Line Detection (2025)
Johannes Ferner, Stefan Huber, Saverio Messineo, Angel Pop, Martin UrayAbstract
The Hough transform is a popular and classical technique in computer vision for the detection of lines (or more general objects). It maps a pixel into a dual space -- the Hough space: each pixel is mapped to the set of lines through this pixel, which forms a curve in Hough space. The detection of lines then becomes a voting process to find those lines that received many votes by pixels. However, this voting is done by thresholding, which is susceptible to noise and other artifacts. In this work, we present an alternative voting technique to detect peaks in the Hough space based on persistent homology, which very naturally addresses limitations of simple thresholding. Experiments on synthetic data show that our method significantly outperforms the original method, while also demonstrating enhanced robustness. This work seeks to inspire future research in two key directions. First, we highlight the untapped potential of Topological Data Analysis techniques and advocate for their broader integration into existing methods, including well-established ones. Secondly, we initiate a discussion on the mathematical stability of the Hough transform, encouraging exploration of mathematically grounded improvements to enhance its robustness.