🍩 Database of Original & Non-Theoretical Uses of Topology

(found 3 matches in 0.001694s)
  1. Exploring the Geometry and Topology of Neural Network Loss Landscapes (2022)

    Stefan Horoi, Jessie Huang, Bastian Rieck, Guillaume Lajoie, Guy Wolf, Smita Krishnaswamy
    Abstract Recent work has established clear links between the generalization performance of trained neural networks and the geometry of their loss landscape near the local minima to which they converge. This suggests that qualitative and quantitative examination of the loss landscape geometry could yield insights about neural network generalization performance during training. To this end, researchers have proposed visualizing the loss landscape through the use of simple dimensionality reduction techniques. However, such visualization methods have been limited by their linear nature and only capture features in one or two dimensions, thus restricting sampling of the loss landscape to lines or planes. Here, we expand and improve upon these in three ways. First, we present a novel “jump and retrain” procedure for sampling relevant portions of the loss landscape. We show that the resulting sampled data holds more meaningful information about the network’s ability to generalize. Next, we show that non-linear dimensionality reduction of the jump and retrain trajectories via PHATE, a trajectory and manifold-preserving method, allows us to visualize differences between networks that are generalizing well vs poorly. Finally, we combine PHATE trajectories with a computational homology characterization to quantify trajectory differences.
  2. Time-Inhomogeneous Diffusion Geometry and Topology (2022)

    Guillaume Huguet, Alexander Tong, Bastian Rieck, Jessie Huang, Manik Kuchroo, Matthew Hirn, Guy Wolf, Smita Krishnaswamy
    Abstract Diffusion condensation is a dynamic process that yields a sequence of multiscale data representations that aim to encode meaningful abstractions. It has proven effective for manifold learning, denoising, clustering, and visualization of high-dimensional data. Diffusion condensation is constructed as a time-inhomogeneous process where each step first computes and then applies a diffusion operator to the data. We theoretically analyze the convergence and evolution of this process from geometric, spectral, and topological perspectives. From a geometric perspective, we obtain convergence bounds based on the smallest transition probability and the radius of the data, whereas from a spectral perspective, our bounds are based on the eigenspectrum of the diffusion kernel. Our spectral results are of particular interest since most of the literature on data diffusion is focused on homogeneous processes. From a topological perspective, we show diffusion condensation generalizes centroid-based hierarchical clustering. We use this perspective to obtain a bound based on the number of data points, independent of their location. To understand the evolution of the data geometry beyond convergence, we use topological data analysis. We show that the condensation process itself defines an intrinsic diffusion homology. We use this intrinsic topology as well as an ambient topology to study how the data changes over diffusion time. We demonstrate both homologies in well-understood toy examples. Our work gives theoretical insights into the convergence of diffusion condensation, and shows that it provides a link between topological and geometric data analysis.
  3. Uncovering the Topology of Time-Varying fMRI Data Using Cubical Persistence (2020)

    Bastian Rieck, Tristan Yates, Christian Bock, Karsten Borgwardt, Guy Wolf, Nicholas Turk-Browne, Smita Krishnaswamy
    Abstract Functional magnetic resonance imaging (fMRI) is a crucial technology for gaining insights into cognitive processes in humans. Data amassed from fMRI measurements result in volumetric data sets that vary over time. However, analysing such data presents a challenge due to the large degree of noise and person-to-person variation in how information is represented in the brain. To address this challenge, we present a novel topological approach that encodes each time point in an fMRI data set as a persistence diagram of topological features, i.e. high-dimensional voids present in the data. This representation naturally does not rely on voxel-by-voxel correspondence and is robust to noise. We show that these time-varying persistence diagrams can be clustered to find meaningful groupings between participants, and that they are also useful in studying within-subject brain state trajectories of subjects performing a particular task. Here, we apply both clustering and trajectory analysis techniques to a group of participants watching the movie 'Partly Cloudy'. We observe significant differences in both brain state trajectories and overall topological activity between adults and children watching the same movie.