🍩 Database of Original & Non-Theoretical Uses of Topology

(found 2 matches in 0.000892s)
  1. Using Zigzag Persistent Homology to Detect Hopf Bifurcations in Dynamical Systems (2020)

    Sarah Tymochko, Elizabeth Munch, Firas A. Khasawneh
    Abstract Bifurcations in dynamical systems characterize qualitative changes in the system behavior. Therefore, their detection is important because they can signal the transition from normal system operation to imminent failure. While standard persistent homology has been used in this setting, it usually requires analyzing a collection of persistence diagrams, which in turn drives up the computational cost considerably. Using zigzag persistence, we can capture topological changes in the state space of the dynamical system in only one persistence diagram. Here we present Bifurcations using ZigZag (BuZZ), a one-step method to study and detect bifurcations using zigzag persistence. The BuZZ method is successfully able to detect this type of behavior in two synthetic examples as well as an example dynamical system.
  2. Chatter Diagnosis in Milling Using Supervised Learning and Topological Features Vector (2019)

    Melih C. Yesilli, Sarah Tymochko, Firas A. Khasawneh, Elizabeth Munch
    Abstract Chatter detection has become a prominent subject of interest due to its effect on cutting tool life, surface finish and spindle of machine tool. Most of the existing methods in chatter detection literature are based on signal processing and signal decomposition. In this study, we use topological features of data simulating cutting tool vibrations, combined with four supervised machine learning algorithms to diagnose chatter in the milling process. Persistence diagrams, a method of representing topological features, are not easily used in the context of machine learning, so they must be transformed into a form that is more amenable. Specifically, we will focus on two different methods for featurizing persistence diagrams, Carlsson coordinates and template functions. In this paper, we provide classification results for simulated data from various cutting configurations, including upmilling and downmilling, in addition to the same data with some added noise. Our results show that Carlsson Coordinates and Template Functions yield accuracies as high as 96% and 95%, respectively. We also provide evidence that these topological methods are noise robust descriptors for chatter detection.