🍩 Database of Original & Non-Theoretical Uses of Topology

(found 8 matches in 0.001147s)
  1. Topological Attention for Time Series Forecasting (2021)

    Sebastian Zeng, Florian Graf, Christoph Hofer, Roland Kwitt
    Abstract The problem of (point) forecasting univariate time series is considered. Most approaches, ranging from traditional statistical methods to recent learning-based techniques with neural networks, directly operate on raw time series observations. As an extension, we study whether local topological properties, as captured via persistent homology, can serve as a reliable signal that provides complementary information for learning to forecast. To this end, we propose topological attention, which allows attending to local topological features within a time horizon of historical data. Our approach easily integrates into existing end-to-end trainable forecasting models, such as N-BEATS, and, in combination with the latter exhibits state-of-the-art performance on the large-scale M4 benchmark dataset of 100,000 diverse time series from different domains. Ablation experiments, as well as a comparison to recent techniques in a setting where only a single time series is available for training, corroborate the beneficial nature of including local topological information through an attention mechanism.
  2. Graph Filtration Learning (2020)

    Christoph Hofer, Florian Graf, Bastian Rieck, Marc Niethammer, Roland Kwitt
    Abstract We propose an approach to learning with graph-structured data in the problem domain of graph classification. In particular, we present a novel type of readout operation to aggregate node features into a graph-level representation. To this end, we leverage persistent homology computed via a real-valued, learnable, filter function. We establish the theoretical foundation for differentiating through the persistent homology computation. Empirically, we show that this type of readout operation compares favorably to previous techniques, especially when the graph connectivity structure is informative for the learning problem.
  3. Topologically Densified Distributions (2020)

    Christoph Hofer, Florian Graf, Marc Niethammer, Roland Kwitt
    Abstract We study regularization in the context of small sample-size learning with over-parametrized neural networks. Specifically, we shift focus from architectural properties, such as norms on the network weights, to properties of the internal representations before a linear classifier. Specifically, we impose a topological constraint on samples drawn from the probability measure induced in that space. This provably leads to mass concentration effects around the representations of training instances, i.e., a property beneficial for generalization. By leveraging previous work to impose topological constrains in a neural network setting, we provide empirical evidence (across various vision benchmarks) to support our claim for better generalization.
  4. Learning Representations of Persistence Barcodes (2019)

    Christoph D. Hofer, Roland Kwitt, Marc Niethammer
    Abstract We consider the problem of supervised learning with summary representations of topological features in data. In particular, we focus on persistent homology, the prevalent tool used in topological data analysis. As the summary representations, referred to as barcodes or persistence diagrams, come in the unusual format of multi sets, equipped with computationally expensive metrics, they can not readily be processed with conventional learning techniques. While different approaches to address this problem have been proposed, either in the context of kernel-based learning, or via carefully designed vectorization techniques, it remains an open problem how to leverage advances in representation learning via deep neural networks. Appropriately handling topological summaries as input to neural networks would address the disadvantage of previous strategies which handle this type of data in a task-agnostic manner. In particular, we propose an approach that is designed to learn a task-specific representation of barcodes. In other words, we aim to learn a representation that adapts to the learning problem while, at the same time, preserving theoretical properties (such as stability). This is done by projecting barcodes into a finite dimensional vector space using a collection of parametrized functionals, so called structure elements, for which we provide a generic construction scheme. A theoretical analysis of this approach reveals sufficient conditions to preserve stability, and also shows that different choices of structure elements lead to great differences with respect to their suitability for numerical optimization. When implemented as a neural network input layer, our approach demonstrates compelling performance on various types of problems, including graph classification and eigenvalue prediction, the classification of 2D/3D object shapes and recognizing activities from EEG signals.
  5. Constructing Shape Spaces From a Topological Perspective (2017)

    Christoph Hofer, Roland Kwitt, Marc Niethammer, Yvonne Höller, Eugen Trinka, Andreas Uhl
    Abstract We consider the task of constructing (metric) shape space(s) from a topological perspective. In particular, we present a generic construction scheme and demonstrate how to apply this scheme when shape is interpreted as the differences that remain after factoring out translation, scaling and rotation. This is achieved by leveraging a recently proposed injective functional transform of 2D/3D (binary) objects, based on persistent homology. The resulting shape space is then equipped with a similarity measure that is (1) by design robust to noise and (2) fulfills all metric axioms. From a practical point of view, analyses of object shape can then be carried out directly on segmented objects obtained from some imaging modality without any preprocessing, such as alignment, smoothing, or landmark selection. We demonstrate the utility of the approach on the problem of distinguishing segmented hippocampi from normal controls vs. patients with Alzheimer’s disease in a challenging setup where volume changes are no longer discriminative.
  6. A Stable Multi-Scale Kernel for Topological Machine Learning (2015)

    Jan Reininghaus, Stefan Huber, Ulrich Bauer, Roland Kwitt
    Abstract Topological data analysis offers a rich source of valuable information to study vision problems. Yet, so far we lack a theoretically sound connection to popular kernel-based learning techniques, such as kernel SVMs or kernel PCA. In this work, we establish such a connection by designing a multi-scale kernel for persistence diagrams, a stable summary representation of topological features in data. We show that this kernel is positive definite and prove its stability with respect to the 1-Wasserstein distance. Experiments on two benchmark datasets for 3D shape classification/retrieval and texture recognition show considerable performance gains of the proposed method compared to an alternative approach that is based on the recently introduced persistence landscapes.
  7. Statistical Topological Data Analysis - A Kernel Perspective (2015)

    Roland Kwitt, Stefan Huber, Marc Niethammer, Weili Lin, Ulrich Bauer
    Abstract We consider the problem of statistical computations with persistence diagrams, a summary representation of topological features in data. These diagrams encode persistent homology, a widely used invariant in topological data analysis. While several avenues towards a statistical treatment of the diagrams have been explored recently, we follow an alternative route that is motivated by the success of methods based on the embedding of probability measures into reproducing kernel Hilbert spaces. In fact, a positive definite kernel on persistence diagrams has recently been proposed, connecting persistent homology to popular kernel-based learning techniques such as support vector machines. However, important properties of that kernel enabling a principled use in the context of probability measure embeddings remain to be explored. Our contribution is to close this gap by proving universality of a variant of the original kernel, and to demonstrate its effective use in two-sample hypothesis testing on synthetic as well as real-world data.