🍩 Database of Original & Non-Theoretical Uses of Topology

(found 12 matches in 0.002161s)
  1. Topology Identifies Emerging Adaptive Mutations in SARS-CoV-2 (2021)

    Michael Bleher, Lukas Hahn, Juan Angel Patino-Galindo, Mathieu Carriere, Ulrich Bauer, Raul Rabadan, Andreas Ott
    Abstract The COVID-19 pandemic has lead to a worldwide effort to characterize its evolution through the mapping of mutations in the genome of the coronavirus SARS-CoV-2. Ideally, one would like to quickly identify new mutations that could confer adaptive advantages (e.g. higher infectivity or immune evasion) by leveraging the large number of genomes. One way of identifying adaptive mutations is by looking at convergent mutations, mutations in the same genomic position that occur independently. However, the large number of currently available genomes precludes the efficient use of phylogeny-based techniques. Here, we establish a fast and scalable Topological Data Analysis approach for the early warning and surveillance of emerging adaptive mutations based on persistent homology. It identifies convergent events merely by their topological footprint and thus overcomes limitations of current phylogenetic inference techniques. This allows for an unbiased and rapid analysis of large viral datasets. We introduce a new topological measure for convergent evolution and apply it to the GISAID dataset as of February 2021, comprising 303,651 high-quality SARS-CoV-2 isolates collected since the beginning of the pandemic. We find that topologically salient mutations on the receptor-binding domain appear in several variants of concern and are linked with an increase in infectivity and immune escape, and for many adaptive mutations the topological signal precedes an increase in prevalence. We show that our method effectively identifies emerging adaptive mutations at an early stage. By localizing topological signals in the dataset, we extract geo-temporal information about the early occurrence of emerging adaptive mutations. The identification of these mutations can help to develop an alert system to monitor mutations of concern and guide experimentalists to focus the study of specific circulating variants.
  2. Topological Data Analysis of Single-Cell Hi-C Contact Maps (2020)

    Mathieu Carrière, Raúl Rabadán
    Abstract Due to recent breakthroughs in high-throughput sequencing, it is now possible to use chromosome conformation capture (CCC) to understand the three dimensional conformation of DNA at the whole genome level, and to characterize it with the so-called contact maps. This is very useful since many biological processes are correlated with DNA folding, such as DNA transcription. However, the methods for the analysis of such conformations are still lacking mathematical guarantees and statistical power. To handle this issue, we propose to use the Mapper, which is a standard tool of Topological Data Analysis (TDA) that allows one to efficiently encode the inherent continuity and topology of underlying biological processes in data, in the form of a graph with various features such as branches and loops. In this article, we show how recent statistical techniques developed in TDA for the Mapper algorithm can be extended and leveraged to formally define and statistically quantify the presence of topological structures coming from biological phenomena, such as the cell cyle, in datasets of CCC contact maps.
  3. Identification of Relevant Genetic Alterations in Cancer Using Topological Data Analysis (2020)

    Raúl Rabadán, Yamina Mohamedi, Udi Rubin, Tim Chu, Adam N. Alghalith, Oliver Elliott, Luis Arnés, Santiago Cal, Álvaro J. Obaya, Arnold J. Levine, Pablo G. Cámara
    Abstract Large-scale cancer genomic studies enable the systematic identification of mutations that lead to the genesis and progression of tumors, uncovering the underlying molecular mechanisms and potential therapies. While some such mutations are recurrently found in many tumors, many others exist solely within a few samples, precluding detection by conventional recurrence-based statistical approaches. Integrated analysis of somatic mutations and RNA expression data across 12 tumor types reveals that mutations of cancer genes are usually accompanied by substantial changes in expression. We use topological data analysis to leverage this observation and uncover 38 elusive candidate cancer-associated genes, including inactivating mutations of the metalloproteinase ADAMTS12 in lung adenocarcinoma. We show that ADAMTS12−/− mice have a five-fold increase in the susceptibility to develop lung tumors, confirming the role of ADAMTS12 as a tumor suppressor gene. Our results demonstrate that data integration through topological techniques can increase our ability to identify previously unreported cancer-related alterations., Rare cancer mutations are often missed using recurrence-based statistical approaches, but are usually accompanied by changes in expression. Here the authors leverage this information to uncover several elusive candidate cancer-associated genes using topological data analysis.
  4. Quantifying Genetic Innovation: Mathematical Foundations for the Topological Study of Reticulate Evolution (2020)

    Michael Lesnick, Raúl Rabadán, Daniel I. S. Rosenbloom
    Abstract A topological approach to the study of genetic recombination, based on persistent homology, was introduced by Chan, Carlsson, and Rabadán in 2013. This associates a sequence of signatures called barcodes to genomic data sampled from an evolutionary history. In this paper, we develop theoretical foundations for this approach. First, we present a novel formulation of the underlying inference problem. Specifically, we introduce and study the novelty profile, a simple, stable statistic of an evolutionary history which not only counts recombination events but also quantifies how recombination creates genetic diversity. We propose that the (hitherto implicit) goal of the topological approach to recombination is the estimation of novelty profiles. We then study the problem of obtaining a lower bound on the novelty profile using barcodes. We focus on a low-recombination regime, where the evolutionary history can be described by a directed acyclic graph called a galled tree, which differs from a tree only by isolated topological defects. We show that in this regime, under a complete sampling assumption, the \$1\textasciicircum\mathrm\st\\$ barcode yields a lower bound on the novelty profile, and hence on the number of recombination events. For \$i\textgreater1\$, the \$i\textasciicircum\\mathrm\th\\\$ barcode is empty. In addition, we use a stability principle to strengthen these results to ones which hold for any subsample of an arbitrary evolutionary history. To establish these results, we describe the topology of the Vietoris--Rips filtrations arising from evolutionary histories indexed by galled trees. As a step towards a probabilistic theory, we also show that for a random history indexed by a fixed galled tree and satisfying biologically reasonable conditions, the intervals of the \$1\textasciicircum\\mathrm\st\\\$ barcode are independent random variables. Using simulations, we explore the sensitivity of these intervals to recombination.
  5. Topological Data Analysis for Genomics and Evolution: Topology in Biology (2019)

    Raul Rabadan, Andrew J. Blumberg
    Abstract Biology has entered the age of Big Data. A technical revolution has transformed the field, and extracting meaningful information from large biological data sets is now a central methodological challenge. Algebraic topology is a well-established branch of pure mathematics that studies qualitative descriptors of the shape of geometric objects. It aims to reduce comparisons of shape to a comparison of algebraic invariants, such as numbers, which are typically easier to work with. Topological data analysis is a rapidly developing subfield that leverages the tools of algebraic topology to provide robust multiscale analysis of data sets. This book introduces the central ideas and techniques of topological data analysis and its specific applications to biology, including the evolution of viruses, bacteria and humans, genomics of cancer, and single cell characterization of developmental processes. Bridging two disciplines, the book is for researchers and graduate students in genomics and evolutionary biology as well as mathematicians interested in applied topology.
  6. Predicting Clinical Outcomes in Glioblastoma: An Application of Topological and Functional Data Analysis (2019)

    Lorin Crawford, Anthea Monod, Andrew X. Chen, Sayan Mukherjee, Raúl Rabadán
    Abstract Glioblastoma multiforme (GBM) is an aggressive form of human brain cancer that is under active study in the field of cancer biology. Its rapid progression and the relative time cost of obtaining molecular data make other readily available forms of data, such as images, an important resource for actionable measures in patients. Our goal is to use information given by medical images taken from GBM patients in statistical settings. To do this, we design a novel statistic—the smooth Euler characteristic transform (SECT)—that quantifies magnetic resonance images of tumors. Due to its well-defined inner product structure, the SECT can be used in a wider range of functional and nonparametric modeling approaches than other previously proposed topological summary statistics. When applied to a cohort of GBM patients, we find that the SECT is a better predictor of clinical outcomes than both existing tumor shape quantifications and common molecular assays. Specifically, we demonstrate that SECT features alone explain more of the variance in GBM patient survival than gene expression, volumetric features, and morphometric features. The main takeaways from our findings are thus 2-fold. First, they suggest that images contain valuable information that can play an important role in clinical prognosis and other medical decisions. Second, they show that the SECT is a viable tool for the broader study of medical imaging informatics. Supplementary materials for this article, including a standardized description of the materials available for reproducing the work, are available as an online supplement.
  7. Single-Cell Topological RNA-Seq Analysis Reveals Insights Into Cellular Differentiation and Development (2017)

    Abbas H. Rizvi, Pablo G. Camara, Elena K. Kandror, Thomas J. Roberts, Ira Schieren, Tom Maniatis, Raul Rabadan
    Abstract Transcriptional programs control cellular lineage commitment and differentiation during development. Understanding cell fate has been advanced by studying single-cell RNA-seq, but is limited by the assumptions of current analytic methods regarding the structure of data. We present single-cell topological data analysis (scTDA), an algorithm for topology-based computational analyses to study temporal, unbiased transcriptional regulation. Compared to other methods, scTDA is a non-linear, model-independent, unsupervised statistical framework that can characterize transient cellular states. We applied scTDA to the analysis of murine embryonic stem cell (mESC) differentiation in vitro in response to inducers of motor neuron differentiation. scTDA resolved asynchrony and continuity in cellular identity over time, and identified four transient states (pluripotent, precursor, progenitor, and fully differentiated cells) based on changes in stage-dependent combinations of transcription factors, RNA-binding proteins and long non-coding RNAs. scTDA can be applied to study asynchronous cellular responses to either developmental cues or environmental perturbations.
  8. Topological Data Analysis Generates High-Resolution, Genome-Wide Maps of Human Recombination (2016)

    Pablo G. Camara, Daniel I. S. Rosenbloom, Kevin J. Emmett, Arnold J. Levine, Raul Rabadan
    Abstract Meiotic recombination is a fundamental evolutionary process driving diversity in eukaryotes. In mammals, recombination is known to occur preferentially at specific genomic regions. Using topological data analysis (TDA), a branch of applied topology that extracts global features from large data sets, we developed an efficient method for mapping recombination at fine scales. When compared to standard linkage-based methods, TDA can deal with a larger number of SNPs and genomes without incurring prohibitive computational costs. We applied TDA to 1,000 Genomes Project data and constructed high-resolution whole-genome recombination maps of seven human populations. Our analysis shows that recombination is generally under-represented within transcription start sites. However, the binding sites of specific transcription factors are enriched for sites of recombination. These include transcription factors that regulate the expression of meiosis- and gametogenesis-specific genes, cell cycle progression, and differentiation blockage. Additionally, our analysis identifies an enrichment for sites of recombination at repeat-derived loci matched by piwi-interacting RNAs.
  9. Inference of Ancestral Recombination Graphs Through Topological Data Analysis (2016)

    Pablo G. Cámara, Arnold J. Levine, Raúl Rabadán
    Abstract The recent explosion of genomic data has underscored the need for interpretable and comprehensive analyses that can capture complex phylogenetic relationships within and across species. Recombination, reassortment and horizontal gene transfer constitute examples of pervasive biological phenomena that cannot be captured by tree-like representations. Starting from hundreds of genomes, we are interested in the reconstruction of potential evolutionary histories leading to the observed data. Ancestral recombination graphs represent potential histories that explicitly accommodate recombination and mutation events across orthologous genomes. However, they are computationally costly to reconstruct, usually being infeasible for more than few tens of genomes. Recently, Topological Data Analysis (TDA) methods have been proposed as robust and scalable methods that can capture the genetic scale and frequency of recombination. We build upon previous TDA developments for detecting and quantifying recombination, and present a novel framework that can be applied to hundreds of genomes and can be interpreted in terms of minimal histories of mutation and recombination events, quantifying the scales and identifying the genomic locations of recombinations. We implement this framework in a software package, called TARGet, and apply it to several examples, including small migration between different populations, human recombination, and horizontal evolution in finches inhabiting the Galápagos Islands., Evolution occurs through different mechanisms, including point mutations, gene duplication, horizontal gene transfer, and recombinations. Some of these mechanisms cannot be captured by tree graphs. We present a framework, based on the mathematical tools of computational topology, that can explicitly accommodate both recombination and mutation events across the evolutionary history of a sample of genomic sequences. This approach generates a new type of summary graph and algebraic structures that provide quantitative information on the evolutionary scale and frequency of recombination events. The accompanying software, TARGet, is applied to several examples, including migration between sexually-reproducing populations, human recombination, and recombination in Darwin’s finches.
  10. Parametric Inference Using Persistence Diagrams: a Case Study in Population Genetics (2014)

    Kevin Emmett, Daniel Rosenbloom, Pablo Camara, Raul Rabadan
    Abstract Persistent homology computes topological invariants from point cloud data. Recent work has focused on developing statistical methods for data analysis in this framework. We show that, in certain models, parametric inference can be performed using statistics defined on the computed invariants. We develop this idea with a model from population genetics, the coalescent with recombination. We apply our model to an influenza dataset, identifying two scales of topological structure which have a distinct biological interpretation.
  11. Characterizing Scales of Genetic Recombination and Antibiotic Resistance in Pathogenic Bacteria Using Topological Data Analysis (2014)

    Kevin J. Emmett, Raul Rabadan
    Abstract Pathogenic bacteria present a large disease burden on human health. Control of these pathogens is hampered by rampant lateral gene transfer, whereby pathogenic strains may acquire genes conferring resistance to common antibiotics. Here we introduce tools from topological data analysis to characterize the frequency and scale of lateral gene transfer in bacteria, focusing on a set of pathogens of significant public health relevance. As a case study, we examine the spread of antibiotic resistance in Staphylococcus aureus. Finally, we consider the possible role of the human microbiome as a reservoir for antibiotic resistance genes.
  12. Topology of Viral Evolution (2013)

    Joseph Minhow Chan, Gunnar Carlsson, Raul Rabadan
    Abstract The tree structure is currently the accepted paradigm to represent evolutionary relationships between organisms, species or other taxa. However, horizontal, or reticulate, genomic exchanges are pervasive in nature and confound characterization of phylogenetic trees. Drawing from algebraic topology, we present a unique evolutionary framework that comprehensively captures both clonal and reticulate evolution. We show that whereas clonal evolution can be summarized as a tree, reticulate evolution exhibits nontrivial topology of dimension greater than zero. Our method effectively characterizes clonal evolution, reassortment, and recombination in RNA viruses. Beyond detecting reticulate evolution, we succinctly recapitulate the history of complex genetic exchanges involving more than two parental strains, such as the triple reassortment of H7N9 avian influenza and the formation of circulating HIV-1 recombinants. In addition, we identify recurrent, large-scale patterns of reticulate evolution, including frequent PB2-PB1-PA-NP cosegregation during avian influenza reassortment. Finally, we bound the rate of reticulate events (i.e., 20 reassortments per year in avian influenza). Our method provides an evolutionary perspective that not only captures reticulate events precluding phylogeny, but also indicates the evolutionary scales where phylogenetic inference could be accurate.