🍩 Database of Original & Non-Theoretical Uses of Topology
(found 3 matches in 0.001361s)
-
-
Quantifying Genetic Innovation: Mathematical Foundations for the Topological Study of Reticulate Evolution (2020)
Michael Lesnick, Raúl Rabadán, Daniel I. S. RosenbloomAbstract
A topological approach to the study of genetic recombination, based on persistent homology, was introduced by Chan, Carlsson, and Rabadán in 2013. This associates a sequence of signatures called barcodes to genomic data sampled from an evolutionary history. In this paper, we develop theoretical foundations for this approach. First, we present a novel formulation of the underlying inference problem. Specifically, we introduce and study the novelty profile, a simple, stable statistic of an evolutionary history which not only counts recombination events but also quantifies how recombination creates genetic diversity. We propose that the (hitherto implicit) goal of the topological approach to recombination is the estimation of novelty profiles. We then study the problem of obtaining a lower bound on the novelty profile using barcodes. We focus on a low-recombination regime, where the evolutionary history can be described by a directed acyclic graph called a galled tree, which differs from a tree only by isolated topological defects. We show that in this regime, under a complete sampling assumption, the \$1\textasciicircum\mathrm\st\\$ barcode yields a lower bound on the novelty profile, and hence on the number of recombination events. For \$i\textgreater1\$, the \$i\textasciicircum\\mathrm\th\\\$ barcode is empty. In addition, we use a stability principle to strengthen these results to ones which hold for any subsample of an arbitrary evolutionary history. To establish these results, we describe the topology of the Vietoris--Rips filtrations arising from evolutionary histories indexed by galled trees. As a step towards a probabilistic theory, we also show that for a random history indexed by a fixed galled tree and satisfying biologically reasonable conditions, the intervals of the \$1\textasciicircum\\mathrm\st\\\$ barcode are independent random variables. Using simulations, we explore the sensitivity of these intervals to recombination. -
Feasibility of Topological Data Analysis for Event-Related fMRI (2019)
Cameron T. Ellis, Michael Lesnick, Gregory Henselman-Petrusek, Bryn Keller, Jonathan D. CohenAbstract
Recent fMRI research shows that perceptual and cognitive representations are instantiated in high-dimensional multivoxel patterns in the brain. However, the methods for detecting these representations are limited. Topological data analysis (TDA) is a new approach, based on the mathematical field of topology, that can detect unique types of geometric features in patterns of data. Several recent studies have successfully applied TDA to study various forms of neural data; however, to our knowledge, TDA has not been successfully applied to data from event-related fMRI designs. Event-related fMRI is very common but limited in terms of the number of events that can be run within a practical time frame and the effect size that can be expected. Here, we investigate whether persistent homology—a popular TDA tool that identifies topological features in data and quantifies their robustness—can identify known signals given these constraints. We use fmrisim, a Python-based simulator of realistic fMRI data, to assess the plausibility of recovering a simple topological representation under a variety of conditions. Our results suggest that persistent homology can be used under certain circumstances to recover topological structure embedded in realistic fMRI data simulations.How do we represent the world? In cognitive neuroscience it is typical to think representations are points in high-dimensional space. In order to study these kinds of spaces it is necessary to have tools that capture the organization of high-dimensional data. Topological data analysis (TDA) holds promise for detecting unique types of geometric features in patterns of data. Although potentially useful, TDA has not been applied to event-related fMRI data. Here we utilized a popular tool from TDA, persistent homology, to recover topological signals from event-related fMRI data. We simulated realistic fMRI data and explored the parameters under which persistent homology can successfully extract signal. We also provided extensive code and recommendations for how to make the most out of TDA for fMRI analysis.