🍩 Database of Original & Non-Theoretical Uses of Topology
(found 6 matches in 0.002968s)
-
-
Chatter Diagnosis in Milling Using Supervised Learning and Topological Features Vector (2019)
Melih C. Yesilli, Sarah Tymochko, Firas A. Khasawneh, Elizabeth MunchAbstract
Chatter detection has become a prominent subject of interest due to its effect on cutting tool life, surface finish and spindle of machine tool. Most of the existing methods in chatter detection literature are based on signal processing and signal decomposition. In this study, we use topological features of data simulating cutting tool vibrations, combined with four supervised machine learning algorithms to diagnose chatter in the milling process. Persistence diagrams, a method of representing topological features, are not easily used in the context of machine learning, so they must be transformed into a form that is more amenable. Specifically, we will focus on two different methods for featurizing persistence diagrams, Carlsson coordinates and template functions. In this paper, we provide classification results for simulated data from various cutting configurations, including upmilling and downmilling, in addition to the same data with some added noise. Our results show that Carlsson Coordinates and Template Functions yield accuracies as high as 96% and 95%, respectively. We also provide evidence that these topological methods are noise robust descriptors for chatter detection. -
Data-Driven and Automatic Surface Texture Analysis Using Persistent Homology (2021)
Melih C. Yesilli, Firas A. KhasawnehAbstract
Surface roughness plays an important role in analyzing engineering surfaces. It quantifies the surface topography and can be used to determine whether the resulting surface finish is acceptable or not. Nevertheless, while several existing tools and standards are available for computing surface roughness, these methods rely heavily on user input thus slowing down the analysis and increasing manufacturing costs. Therefore, fast and automatic determination of the roughness level is essential to avoid costs resulting from surfaces with unacceptable finish, and user-intensive analysis. In this study, we propose a Topological Data Analysis (TDA) based approach to classify the roughness level of synthetic surfaces using both their areal images and profiles. We utilize persistent homology from TDA to generate persistence diagrams that encapsulate information on the shape of the surface. We then obtain feature matrices for each surface or profile using Carlsson coordinates, persistence images, and template functions. We compare our results to two widely used methods in the literature: Fast Fourier Transform (FFT) and Gaussian filtering. The results show that our approach yields mean accuracies as high as 97%. We also show that, in contrast to existing surface analysis tools, our TDA-based approach is fully automatable and provides adaptive feature extraction. -
Exploring Surface Texture Quantification in Piezo Vibration Striking Treatment (PVST) Using Topological Measures (2022)
Melih C. Yesilli, Max M. Chumley, Jisheng Chen, Firas A. Khasawneh, Yang GuoAbstract
Abstract. Surface texture influences wear and tribological properties of manufactured parts, and it plays a critical role in end-user products. Therefore, quantifying the order or structure of a manufactured surface provides important information on the quality and life expectancy of the product. Although texture can be intentionally introduced to enhance aesthetics or to satisfy a design function, sometimes it is an inevitable byproduct of surface treatment processes such as Piezo Vibration Striking Treatment (PVST). Measures of order for surfaces have been characterized using statistical, spectral, and geometric approaches. For nearly hexagonal lattices, topological tools have also been used to measure the surface order. This paper explores utilizing tools from Topological Data Analysis for measuring surface texture. We compute measures of order based on optical digital microscope images of surfaces treated using PVST. These measures are applied to the grid obtained from estimating the centers of tool impacts, and they quantify the grid’s deviations from the nominal one. Our results show that TDA provides a convenient framework for characterization of pattern type that bypasses some limitations of existing tools such as difficult manual processing of the data and the need for an expert user to analyze and interpret the surface images. -
Pattern Characterization Using Topological Data Analysis: Application to Piezo Vibration Striking Treatment (2023)
Max M. Chumley, Melih C. Yesilli, Jisheng Chen, Firas A. Khasawneh, Yang GuoAbstract
Quantifying patterns in visual or tactile textures provides important information about the process or phenomena that generated these patterns. In manufacturing, these patterns can be intentionally introduced as a design feature, or they can be a byproduct of a specific process. Since surface texture has significant impact on the mechanical properties and the longevity of the workpiece, it is important to develop tools for quantifying surface patterns and, when applicable, comparing them to their nominal counterparts. While existing tools may be able to indicate the existence of a pattern, they typically do not provide more information about the pattern structure, or how much it deviates from a nominal pattern. Further, prior works do not provide automatic or algorithmic approaches for quantifying other pattern characteristics such as depths’ consistency, and variations in the pattern motifs at different level sets. This paper leverages persistent homology from Topological Data Analysis (TDA) to derive noise-robust scores for quantifying motifs’ depth and roundness in a pattern. Specifically, sublevel persistence is used to derive scores that quantify the consistency of indentation depths at any level set in Piezo Vibration Striking Treatment (PVST) surfaces. Moreover, we combine sublevel persistence with the distance transform to quantify the consistency of the indentation radii, and to compare them with the nominal ones. Although the tool in our PVST experiments had a semi-spherical profile, we present a generalization of our approach to tools/motifs of arbitrary shapes thus making our method applicable to other pattern-generating manufacturing processes. -
Transfer Learning for Autonomous Chatter Detection in Machining (2022)
Melih C. Yesilli, Firas A. Khasawneh, Brian P. MannAbstract
Large-amplitude chatter vibrations are one of the most important phenomena in machining processes. It is often detrimental in cutting operations causing a poor surface finish and decreased tool life. Therefore, chatter detection using machine learning has been an active research area over the last decade. Three challenges can be identified in applying machine learning for chatter detection at large in industry: an insufficient understanding of the universality of chatter features across different processes, the need for automating feature extraction, and the existence of limited data for each specific workpiece-machine tool combination, e.g., when machining one-off products. These three challenges can be grouped under the umbrella of transfer learning, which is concerned with studying how knowledge gained from one setting can be leveraged to obtain information in new settings. This paper studies automating chatter detection by evaluating transfer learning of prominent as well as novel chatter detection methods. We investigate chatter classification accuracy using a variety of features extracted from turning and milling experiments with different cutting configurations. The studied methods include Fast Fourier Transform (FFT), Power Spectral Density (PSD), the Auto-correlation Function (ACF), and decomposition based tools such as Wavelet Packet Transform (WPT) and Ensemble Empirical Mode Decomposition (EEMD). We also examine more recent approaches based on Topological Data Analysis (TDA) and similarity measures of time series based on Discrete Time Warping (DTW). We evaluate transfer learning potential of each approach by training and testing both within and across the turning and milling data sets. Four supervised classification algorithms are explored: support vector machine (SVM), logistic regression, random forest classification, and gradient boosting. In addition to accuracy, we also comment on the automation potential of feature extraction for each approach which is integral to creating autonomous manufacturing centers. Our results show that carefully chosen time-frequency features can lead to high classification accuracies albeit at the cost of requiring manual pre-processing and the tagging of an expert user. On the other hand, we found that the TDA and DTW approaches can provide accuracies and F1-scores on par with the time-frequency methods without the need for manual preprocessing via completely automatic pipelines. Further, we discovered that the DTW approach outperforms all other methods when trained using the milling data and tested on the turning data. Therefore, TDA and DTW approaches may be preferred over the time-frequency-based approaches for fully automated chatter detection schemes. DTW and TDA also can be more advantageous when pooling data from either limited workpiece-machine tool combinations, or from small data sets of one-off processes.