🍩 Database of Original & Non-Theoretical Uses of Topology
(found 3 matches in 0.001003s)
-
-
Two-Tier Mapper, an Unbiased Topology-Based Clustering Method for Enhanced Global Gene Expression Analysis (2019)
Rachel Jeitziner, Mathieu Carrière, Jacques Rougemont, Steve Oudot, Kathryn Hess, Cathrin BriskenAbstract
MOTIVATION: Unbiased clustering methods are needed to analyze growing numbers of complex datasets. Currently available clustering methods often depend on parameters that are set by the user, they lack stability, and are not applicable to small datasets. To overcome these shortcomings we used topological data analysis, an emerging field of mathematics that discerns additional feature and discovers hidden insights on datasets and has a wide application range. RESULTS: We have developed a topology-based clustering method called Two-Tier Mapper (TTMap) for enhanced analysis of global gene expression datasets. First, TTMap discerns divergent features in the control group, adjusts for them, and identifies outliers. Second, the deviation of each test sample from the control group in a high-dimensional space is computed, and the test samples are clustered using a new Mapper-based topological algorithm at two levels: a global tier and local tiers. All parameters are either carefully chosen or data-driven, avoiding any user-induced bias. The method is stable, different datasets can be combined for analysis, and significant subgroups can be identified. It outperforms current clustering methods in sensitivity and stability on synthetic and biological datasets, in particular when sample sizes are small; outcome is not affected by removal of control samples, by choice of normalization, or by subselection of data. TTMap is readily applicable to complex, highly variable biological samples and holds promise for personalized medicine. AVAILABILITY AND IMPLEMENTATION: TTMap is supplied as an R package in Bioconductor. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online. -
Topology Identifies Emerging Adaptive Mutations in SARS-CoV-2 (2021)
Michael Bleher, Lukas Hahn, Juan Angel Patino-Galindo, Mathieu Carriere, Ulrich Bauer, Raul Rabadan, Andreas OttAbstract
The COVID-19 pandemic has lead to a worldwide effort to characterize its evolution through the mapping of mutations in the genome of the coronavirus SARS-CoV-2. Ideally, one would like to quickly identify new mutations that could confer adaptive advantages (e.g. higher infectivity or immune evasion) by leveraging the large number of genomes. One way of identifying adaptive mutations is by looking at convergent mutations, mutations in the same genomic position that occur independently. However, the large number of currently available genomes precludes the efficient use of phylogeny-based techniques. Here, we establish a fast and scalable Topological Data Analysis approach for the early warning and surveillance of emerging adaptive mutations based on persistent homology. It identifies convergent events merely by their topological footprint and thus overcomes limitations of current phylogenetic inference techniques. This allows for an unbiased and rapid analysis of large viral datasets. We introduce a new topological measure for convergent evolution and apply it to the GISAID dataset as of February 2021, comprising 303,651 high-quality SARS-CoV-2 isolates collected since the beginning of the pandemic. We find that topologically salient mutations on the receptor-binding domain appear in several variants of concern and are linked with an increase in infectivity and immune escape, and for many adaptive mutations the topological signal precedes an increase in prevalence. We show that our method effectively identifies emerging adaptive mutations at an early stage. By localizing topological signals in the dataset, we extract geo-temporal information about the early occurrence of emerging adaptive mutations. The identification of these mutations can help to develop an alert system to monitor mutations of concern and guide experimentalists to focus the study of specific circulating variants.