🍩 Database of Original & NonTheoretical Uses of Topology
(found 7 matches in 0.002622s)


Analyzing Collective Motion With Machine Learning and Topology (2019)
Dhananjay Bhaskar, Angelika Manhart, Jesse Milzman, John T. Nardini, Kathleen M. Storey, Chad M. Topaz, Lori ZiegelmeierAbstract
We use topological data analysis and machine learning to study a seminal model of collective motion in biology [M. R. D’Orsogna et al., Phys. Rev. Lett. 96, 104302 (2006)]. This model describes agents interacting nonlinearly via attractiverepulsive social forces and gives rise to collective behaviors such as flocking and milling. To classify the emergent collective motion in a large library of numerical simulations and to recover model parameters from the simulation data, we apply machine learning techniques to two different types of input. First, we input time series of order parameters traditionally used in studies of collective motion. Second, we input measures based on topology that summarize the timevarying persistent homology of simulation data over multiple scales. This topological approach does not require prior knowledge of the expected patterns. For both unsupervised and supervised machine learning methods, the topological approach outperforms the one that is based on traditional order parameters. 
A Topological Approach to Selecting Models of Biological Experiments (2019)
M. Ulmer, Lori Ziegelmeier, Chad M. TopazAbstract
We use topological data analysis as a tool to analyze the fit of mathematical models to experimental data. This study is built on data obtained from motion tracking groups of aphids in [Nilsen et al., PLOS One, 2013] and two random walk models that were proposed to describe the data. One model incorporates social interactions between the insects via a functional dependence on an aphid’s distance to its nearest neighbor. The second model is a control model that ignores this dependence. We compare data from each model to data from experiment by performing statistical tests based on three different sets of measures. First, we use time series of order parameters commonly used in collective motion studies. These order parameters measure the overall polarization and angular momentum of the group, and do not rely on a priori knowledge of the models that produced the data. Second, we use order parameter time series that do rely on a priori knowledge, namely average distance to nearest neighbor and percentage of aphids moving. Third, we use computational persistent homology to calculate topological signatures of the data. Analysis of the a priori order parameters indicates that the interactive model better describes the experimental data than the control model does. The topological approach performs as well as these a priori order parameters and better than the other order parameters, suggesting the utility of the topological approach in the absence of specific knowledge of mechanisms underlying the data. 
Mind the Gap: A Study in Global Development Through Persistent Homology (2018)
Andrew Banman, Lori ZiegelmeierAbstract
The Gapminder project set out to use statistics to dispel simplistic notions about global development. In the same spirit, we use persistent homology, a technique from computational algebraic topology, to explore the relationship between country development and geography. For each country, four indicators, gross domestic product per capita; average life expectancy; infant mortality; and gross national income per capita, were used to quantify the development. Two analyses were performed. The first considers clusters of the countries based on these indicators, and the second uncovers cycles in the data when combined with geographic border structure. Our analysis is a multiscale approach that reveals similarities and connections among countries at a variety of levels. We discover localized development patterns that are invisible in standard statistical methods. 
Persistence Images: A Stable Vector Representation of Persistent Homology (2017)
Henry Adams, Tegan Emerson, Michael Kirby, Rachel Neville, Chris Peterson, Patrick Shipman, Sofya Chepushtanova, Eric Hanson, Francis Motta, Lori ZiegelmeierAbstract
Many data sets can be viewed as a noisy sampling of an underlying space, and tools from topological data analysis can characterize this structure for the purpose of knowledge discovery. One such tool is persistent homology, which provides a multiscale description of the homological features within a data set. A useful representation of this homological information is a persistence diagram (PD). Efforts have been made to map PDs into spaces with additional structure valuable to machine learning tasks. We convert a PD to a finitedimensional vector representation which we call a persistence image (PI), and prove the stability of this transformation with respect to small perturbations in the inputs. The discriminatory power of PIs is compared against existing methods, showing significant performance gains. We explore the use of PIs with vectorbased machine learning tools, such as linear sparse support vector machines, which identify features containing discriminating topological information. Finally, high accuracy inference of parameter values from the dynamic output of a discrete dynamical system (the linked twist map) and a partial differential equation (the anisotropic KuramotoSivashinsky equation) provide a novel application of the discriminatory power of PIs.Community Resources

Persistent Homology on Grassmann Manifolds for Analysis of Hyperspectral Movies (2016)
Sofya Chepushtanova, Michael Kirby, Chris Peterson, Lori ZiegelmeierAbstract
The existence of characteristic structure, or shape, in complex data sets has been recognized as increasingly important for mathematical data analysis. This realization has motivated the development of new tools such as persistent homology for exploring topological invariants, or features, in large data sets. In this paper, we apply persistent homology to the characterization of gas plumes in time dependent sequences of hyperspectral cubes, i.e. the analysis of 4way arrays. We investigate hyperspectral movies of LongWavelength Infrared data monitoring an experimental release of chemical simulant into the air. Our approach models regions of interest within the hyperspectral data cubes as points on the real Grassmann manifold Gk,ï źn whose points parameterize the kdimensional subspaces of \$\$\mathbb \R\\textasciicircumn\$\$Rn, contrasting our approach with the more standard framework in Euclidean space. An advantage of this approach is that it allows a sequence of time slices in a hyperspectral movie to be collapsed to a sequence of points in such a way that some of the key structure within and between the slices is encoded by the points on the Grassmann manifold. This motivates the search for topological features, associated with the evolution of the frames of a hyperspectral movie, within the corresponding points on the Grassmann manifold. The proposed mathematical model affords the processing of large data sets while retaining valuable discriminatory information. In this paper, we discuss how embedding our data in the Grassmann manifold, together with topological data analysis, captures dynamical events that occur as the chemical plume is released and evolves. 
Topological Data Analysis of Biological Aggregation Models (2015)
Chad M. Topaz, Lori Ziegelmeier, Tom HalversonAbstract
We apply tools from topological data analysis to two mathematical models inspired by biological aggregations such as bird flocks, fish schools, and insect swarms. Our data consists of numerical simulation output from the models of Vicsek and D'Orsogna. These models are dynamical systems describing the movement of agents who interact via alignment, attraction, and/or repulsion. Each simulation time frame is a point cloud in positionvelocity space. We analyze the topological structure of these point clouds, interpreting the persistent homology by calculating the first few Betti numbers. These Betti numbers count connected components, topological circles, and trapped volumes present in the data. To interpret our results, we introduce a visualization that displays Betti numbers over simulation time and topological persistence scale. We compare our topological results to order parameters typically used to quantify the global behavior of aggregations, such as polarization and angular momentum. The topological calculations reveal events and structure not captured by the order parameters.