🍩 Database of Original & Non-Theoretical Uses of Topology

(found 3 matches in 0.0011s)
  1. The Extended Persistent Homology Transform of Manifolds With Boundary (2022)

    Katharine Turner, Vanessa Robins, James Morgan
    Abstract The Extended Persistent Homology Transform (XPHT) is a topological transform which takes as input a shape embedded in Euclidean space, and to each unit vector assigns the extended persistence module of the height function over that shape with respect to that direction. We can define a distance between two shapes by integrating over the sphere the distance between their respective extended persistence modules. By using extended persistence we get finite distances between shapes even when they have different Betti numbers. We use Morse theory to show that the extended persistence of a height function over a manifold with boundary can be deduced from the extended persistence for that height function restricted to the boundary, alongside labels on the critical points as positive or negative critical. We study the application of the XPHT to binary images; outlining an algorithm for efficient calculation of the XPHT exploiting relationships between the PHT of the boundary curves to the extended persistence of the foreground.
  2. Cliques of Neurons Bound Into Cavities Provide a Missing Link Between Structure and Function (2017)

    Michael W. Reimann, Max Nolte, Martina Scolamiero, Katharine Turner, Rodrigo Perin, Giuseppe Chindemi, Paweł Dłotko, Ran Levi, Kathryn Hess, Henry Markram
    Abstract The lack of a formal link between neural network structure and its emergent function has hampered our understanding of how the brain processes information. We have now come closer to describing such a link by taking the direction of synaptic transmission into account, constructing graphs of a network that reflect the direction of information flow, and analyzing these directed graphs using algebraic topology. Applying this approach to a local network of neurons in the neocortex revealed a remarkably intricate and previously unseen topology of synaptic connectivity. The synaptic network contains an abundance of cliques of neurons bound into cavities that guide the emergence of correlated activity. In response to stimuli, correlated activity binds synaptically connected neurons into functional cliques and cavities that evolve in a stereotypical sequence towards peak complexity. We propose that the brain processes stimuli by forming increasingly complex functional cliques and cavities.