🍩 Database of Original & Non-Theoretical Uses of Topology

(found 3 matches in 0.001376s)
  1. Protein-Folding Analysis Using Features Obtained by Persistent Homology (2020)

    Takashi Ichinomiya, Ippei Obayashi, Yasuaki Hiraoka
    Abstract Understanding the protein-folding process is an outstanding issue in biophysics; recent developments in molecular dynamics simulation have provided insights into this phenomenon. However, the large freedom of atomic motion hinders the understanding of this process. In this study, we applied persistent homology, an emerging method to analyze topological features in a data set, to reveal protein-folding dynamics. We developed a new, to our knowledge, method to characterize the protein structure based on persistent homology and applied this method to molecular dynamics simulations of chignolin. Using principle component analysis or nonnegative matrix factorization, our analysis method revealed two stable states and one saddle state, corresponding to the native, misfolded, and transition states, respectively. We also identified an unfolded state with slow dynamics in the reduced space. Our method serves as a promising tool to understand the protein-folding process.
  2. Hepatic Tumor Classification Using Texture and Topology Analysis of Non-Contrast-Enhanced Three-Dimensional T1-Weighted MR Images With a Radiomics Approach (2019)

    Asuka Oyama, Yasuaki Hiraoka, Ippei Obayashi, Yusuke Saikawa, Shigeru Furui, Kenshiro Shiraishi, Shinobu Kumagai, Tatsuya Hayashi, Jun’ichi Kotoku
    Abstract The purpose of this study is to evaluate the accuracy for classification of hepatic tumors by characterization of T1-weighted magnetic resonance (MR) images using two radiomics approaches with machine learning models: texture analysis and topological data analysis using persistent homology. This study assessed non-contrast-enhanced fat-suppressed three-dimensional (3D) T1-weighted images of 150 hepatic tumors. The lesions included 50 hepatocellular carcinomas (HCCs), 50 metastatic tumors (MTs), and 50 hepatic hemangiomas (HHs) found respectively in 37, 23, and 33 patients. For classification, texture features were calculated, and also persistence images of three types (degree 0, degree 1 and degree 2) were obtained for each lesion from the 3D MR imaging data. We used three classification models. In the classification of HCC and MT (resp. HCC and HH, HH and MT), we obtained accuracy of 92% (resp. 90%, 73%) by texture analysis, and the highest accuracy of 85% (resp. 84%, 74%) when degree 1 (resp. degree 1, degree 2) persistence images were used. Our methods using texture analysis or topological data analysis allow for classification of the three hepatic tumors with considerable accuracy, and thus might be useful when applied for computer-aided diagnosis with MR images.
  3. Understanding Diffraction Patterns of Glassy, Liquid and Amorphous Materials via Persistent Homology Analyses (2019)

    Yohei Onodera, Shinji Kohara, Shuta Tahara, Atsunobu Masuno, Hiroyuki Inoue, Motoki Shiga, Akihiko Hirata, Koichi Tsuchiya, Yasuaki Hiraoka, Ippei Obayashi, Koji Ohara, Akitoshi Mizuno, Osami Sakata
    Abstract The structure of glassy, liquid, and amorphous materials is still not well understood, due to the insufficient structural information from diffraction data. In this article, attempts are made to understand the origin of diffraction peaks, particularly of the first sharp diffraction peak (FSDP, Q1), the principal peak (PP, Q2), and the third peak (Q3), observed in the measured diffraction patterns of disordered materials whose structure contains tetrahedral motifs. It is confirmed that the FSDP (Q1) is not a signature of the formation of a network, because an FSDP is observed in tetrahedral molecular liquids. It is found that the PP (Q2) reflects orientational correlations of tetrahedra. Q3, that can be observed in all disordered materials, even in common liquid metals, stems from simple pair correlations. Moreover, information on the topology of disordered materials was revealed by utilizing persistent homology analyses. The persistence diagram of silica (SiO2) glass suggests that the shape of rings in the glass is similar not only to those in the crystalline phase with comparable density (α-cristobalite), but also to rings present in crystalline phases with higher density (α-quartz and coesite); this is thought to be the signature of disorder. Furthermore, we have succeeded in revealing the differences, in terms of persistent homology, between tetrahedral networks and tetrahedral molecular liquids, and the difference/similarity between liquid and amorphous (glassy) states. Our series of analyses demonstrated that a combination of diffraction data and persistent homology analyses is a useful tool for allowing us to uncover structural features hidden in halo pattern of disordered materials.