🍩 Database of Original & Non-Theoretical Uses of Topology

(found 37 matches in 0.011217s)
  1. Pore Configuration Landscape of Granular Crystallization (2017)

    Mohammad Saadatfar, Hiroshi Takeuchi, Vanessa Robins, Nicolas Francois, Yisuaki Hiraoka
    Abstract Emergence and growth of crystalline domains in granular media remains under-explored. Here, the authors analyse tomographic snapshots from partially recrystallized packings of spheres using persistent homology and find agreement with proposed transitions based on continuous deformation of octahedral and tetrahedral voids.
  2. Towards a New Approach to Reveal Dynamical Organization of the Brain Using Topological Data Analysis (2018)

    Manish Saggar, Olaf Sporns, Javier Gonzalez-Castillo, Peter A. Bandettini, Gunnar Carlsson, Gary Glover, Allan L. Reiss
    Abstract Approaches describing how the brain changes to accomplish cognitive tasks tend to rely on collapsed data. Here, authors present a new approach that maintains high dimensionality and use it to describe individual differences in how brain activity is represented and organized across different cognitive tasks.
  3. Topological Data Analysis for Discovery in Preclinical Spinal Cord Injury and Traumatic Brain Injury (2015)

    Jessica L. Nielson, Jesse Paquette, Aiwen W. Liu, Cristian F. Guandique, C. Amy Tovar, Tomoo Inoue, Karen-Amanda Irvine, John C. Gensel, Jennifer Kloke, Tanya C. Petrossian, Pek Y. Lum, Gunnar E. Carlsson, Geoffrey T. Manley, Wise Young, Michael S. Beattie, Jacqueline C. Bresnahan, Adam R. Ferguson
    Abstract Data-driven discovery in complex neurological disorders has potential to extract meaningful knowledge from large, heterogeneous datasets. Here the authors apply topological data analysis to assess therapeutic effects in preclinical traumatic brain injury and spinal cord injury research studies.
  4. Pore Geometry Characterization by Persistent Homology Theory (2018)

    Fei Jiang, Takeshi Tsuji, Tomoyuki Shirai
    Abstract Rock pore geometry has heterogeneous characteristics and is scale dependent. This feature in a geological formation differs significantly from artificial materials and makes it difficult to predict hydrologic and elastic properties. To characterize pore heterogeneity, we propose an evaluation method that exploits the recently developed persistent homology theory. In the proposed method, complex pore geometry is first represented as sphere cloud data using a pore-network extraction method. Then, a persistence diagram (PD) is calculated from the point cloud, which represents the spatial distribution of pore bodies. A new parameter (distance index H) derived from the PD is proposed to characterize the degree of rock heterogeneity. Low H value indicates high heterogeneity. A new empirical equation using this index H is proposed to predict the effective elastic modulus of porous media. The results indicate that the proposed PD analysis is very efficient for extracting topological feature of pore geometry.
  5. Blind Swarms for Coverage in 2-D (2005)

    V. D. Silva, R. Ghrist, A. Muhammad
    Abstract We consider coverage problems in robot sensor networks with minimal sensing capabilities. In particular, we demonstrate that a “blind” swarm of robots with no localization and only a weak form of distance estimation can rigorously determine coverage in a bounded planar domain of unknown size and shape. The methods we introduce come from algebraic topology. I. COVERAGE PROBLEMS Many of the potential applications of robot swarms require information about coverage in a given domain. For example, using a swarm of robot sensors for surveillance and security applications carries with it the charge to maximize, or, preferably, guarantee coverage. Such applications include networks of security cameras, mine field sweeping via networked robots [18], and oceanographic sampling [4]. In these contexts, each robot has some coverage domain, and one wishes to know about the union of these coverage domains. Such problems are also crucial in applications not involving robots directly, e.g., communication networks. As a preliminary analysis, we consider the static “field” coverage problem, in which robots are assumed stationary and the goal is to verify blanket coverage of a given domain. There is a large literature on this subject; see, e.g., [7], [1], [16]. In addition, there are variants on these problems involving “barrier” coverage to separate regions. Dynamic or “sweeping” coverage [3] is a common and challenging task with applications ranging from security to vacuuming. Although a sensor network composed of robots will have dynamic capabilities, we restrict attention in this brief paper to the static case in order to lay the groundwork for future inquiry. There are two primary approaches to static coverage problems in the literature. The first uses computational geometry tools applied to exact node coordinates. This typically involves ‘ruler-and-compass’ style geometry [10] or Delaunay triangulations of the domain [16], [14], [20]. Such approaches are very rigid with regards to inputs: one must know exact node coordinates and one must know the geometry of the domain precisely to determine the Delaunay complex. To alleviate the former requirement, many authors have turned to probabilistic tools. For example, in [13], the author assumes a randomly and uniformly distributed collection of nodes in a domain with a fixed geometry and proves expected area coverage. Other approaches [15], [19] give percolationtype results about coverage and network integrity for randomly distributed nodes. The drawback of these methods is the need for strong assumptions about the exact shape of the domain, as well as the need for a uniform distribution of nodes. In the sensor networks community, there is a compelling interest (and corresponding burgeoning literature) in determining properties of a network in which the nodes do not possess coordinate data. One example of a coordinate-free approach is in [17], which gives a heuristic method for geographic routing without coordinate data: among the large literature arising from this paper, we note in particular the mathematical analysis of this approach in [11]. To our knowledge, noone has treated the coverage problem in a coordinate-free setting. In this note, we introduce a new set of tools for answering coverage problems in robotics and sensor networks with minimal assumptions about domain geometry and node localization. We provide a sufficiency criterion for coverage. We do not answer the problem of how the nodes should be placed in order to maximize coverage, nor the minimum number of such nodes necessary; neither do we address how to reallocate nodes to fill coverage holes.
  6. When Remote Sensing Meets Topological Data Analysis (2018)

    Ludovic Duponchel
    Abstract Author Summary: Hyperspectral remote sensing plays an increasingly important role in many scientific domains and everyday life problems. Indeed, this imaging concept ends up in applications as varied as catching tax-evaders red-handed by locating new construction and building alterations, searching for aircraft and saving lives after fatal crashes, detecting oil spills for marine life and environmental preservation, spying on enemies with reconnaissance satellites, watching algae grow as an indicator of environmental health, forecasting weather to warn about natural disasters and much more. From an instrumental point of view, we can say that the actual spectrometers have rather good characteristics, even if we can always increase spatial resolution and spectral range. In order to extract ever more information from such experiments and develop new applications, we must, therefore, propose multivariate data analysis tools able to capture the shape of data sets and their specific features. Nevertheless, actual methods often impose a data model which implicitly defines the geometry of the data set. The aim of the paper is thus to introduce the concept of topological data analysis in the framework of remote sensing, making no assumptions about the global shape of the data set, but also allowing the capture of its local features.
  7. Identification of Relevant Genetic Alterations in Cancer Using Topological Data Analysis (2020)

    Raúl Rabadán, Yamina Mohamedi, Udi Rubin, Tim Chu, Adam N. Alghalith, Oliver Elliott, Luis Arnés, Santiago Cal, Álvaro J. Obaya, Arnold J. Levine, Pablo G. Cámara
    Abstract Large-scale cancer genomic studies enable the systematic identification of mutations that lead to the genesis and progression of tumors, uncovering the underlying molecular mechanisms and potential therapies. While some such mutations are recurrently found in many tumors, many others exist solely within a few samples, precluding detection by conventional recurrence-based statistical approaches. Integrated analysis of somatic mutations and RNA expression data across 12 tumor types reveals that mutations of cancer genes are usually accompanied by substantial changes in expression. We use topological data analysis to leverage this observation and uncover 38 elusive candidate cancer-associated genes, including inactivating mutations of the metalloproteinase ADAMTS12 in lung adenocarcinoma. We show that ADAMTS12−/− mice have a five-fold increase in the susceptibility to develop lung tumors, confirming the role of ADAMTS12 as a tumor suppressor gene. Our results demonstrate that data integration through topological techniques can increase our ability to identify previously unreported cancer-related alterations., Rare cancer mutations are often missed using recurrence-based statistical approaches, but are usually accompanied by changes in expression. Here the authors leverage this information to uncover several elusive candidate cancer-associated genes using topological data analysis.
  8. The Persistent Homology Mathematical Framework Provides Enhanced Genotype-to-Phenotype Associations for Plant Morphology (2018)

    Mao Li, Margaret H. Frank, Viktoriya Coneva, Washington Mio, Daniel H. Chitwood, Christopher N. Topp
    Abstract Efforts to understand the genetic and environmental conditioning of plant morphology are hindered by the lack of flexible and effective tools for quantifying morphology. Here, we demonstrate that persistent-homology-based topological methods can improve measurement of variation in leaf shape, serrations, and root architecture. We apply these methods to 2D images of leaves and root systems in field-grown plants of a domesticated introgression line population of tomato (Solanum pennellii). We find that compared with some commonly used conventional traits, (1) persistent-homology-based methods can more comprehensively capture morphological variation; (2) these techniques discriminate between genotypes with a larger normalized effect size and detect a greater number of unique quantitative trait loci (QTLs); (3) multivariate traits, whether statistically derived from univariate or persistent-homology-based traits, improve our ability to understand the genetic basis of phenotype; and (4) persistent-homology-based techniques detect unique QTLs compared to conventional traits or their multivariate derivatives, indicating that previously unmeasured aspects of morphology are now detectable. The QTL results further imply that genetic contributions to morphology can affect both the shoot and root, revealing a pleiotropic basis to natural variation in tomato. Persistent homology is a versatile framework to quantify plant morphology and developmental processes that complements and extends existing methods.
  9. The Persistence of Large Scale Structures I: Primordial Non-Gaussianity (2020)

    Matteo Biagetti, Alex Cole, Gary Shiu
    Abstract We develop an analysis pipeline for characterizing the topology of large scale structure and extracting cosmological constraints based on persistent homology. Persistent homology is a technique from topological data analysis that quantifies the multiscale topology of a data set, in our context unifying the contributions of clusters, filament loops, and cosmic voids to cosmological constraints. We describe how this method captures the imprint of primordial local non-Gaussianity on the late-time distribution of dark matter halos, using a set of N-body simulations as a proxy for real data analysis. For our best single statistic, running the pipeline on several cubic volumes of size \$40~(\rm\Gpc/h\)\textasciicircum\3\\$, we detect \$f_\\rm NL\\textasciicircum\\rm loc\=10\$ at \$97.5\%\$ confidence on \$\sim 85\%\$ of the volumes. Additionally we test our ability to resolve degeneracies between the topological signature of \$f_\\rm NL\\textasciicircum\\rm loc\\$ and variation of \$\sigma_8\$ and argue that correctly identifying nonzero \$f_\\rm NL\\textasciicircum\\rm loc\\$ in this case is possible via an optimal template method. Our method relies on information living at \$\mathcal\O\(10)\$ Mpc/h, a complementary scale with respect to commonly used methods such as the scale-dependent bias in the halo/galaxy power spectrum. Therefore, while still requiring a large volume, our method does not require sampling long-wavelength modes to constrain primordial non-Gaussianity. Moreover, our statistics are interpretable: we are able to reproduce previous results in certain limits and we make new predictions for unexplored observables, such as filament loops formed by dark matter halos in a simulation box.
  10. Topological Data Analysis as a Morphometric Method: Using Persistent Homology to Demarcate a Leaf Morphospace (2018)

    Mao Li, Hong An, Ruthie Angelovici, Clement Bagaza, Albert Batushansky, Lynn Clark, Viktoriya Coneva, Michael J. Donoghue, Erika Edwards, Diego Fajardo, Hui Fang, Margaret H. Frank, Timothy Gallaher, Sarah Gebken, Theresa Hill, Shelley Jansky, Baljinder Kaur, Phillip C. Klahs, Laura L. Klein, Vasu Kuraparthy, Jason Londo, Zoë Migicovsky, Allison Miller, Rebekah Mohn, Sean Myles, Wagner C. Otoni, J. C. Pires, Edmond Rieffer, Sam Schmerler, Elizabeth Spriggs, Christopher N. Topp, Allen Van Deynze, Kuang Zhang, Linglong Zhu, Braden M. Zink, Daniel H. Chitwood
    Abstract Current morphometric methods that comprehensively measure shape cannot compare the disparate leaf shapes found in seed plants and are sensitive to processing artifacts. We explore the use of persistent homology, a topological method applied as a filtration across simplicial complexes (or more simply, a method to measure topological features of spaces across different spatial resolutions), to overcome these limitations. The described method isolates subsets of shape features and measures the spatial relationship of neighboring pixel densities in a shape. We apply the method to the analysis of 182,707 leaves, both published and unpublished, representing 141 plant families collected from 75 sites throughout the world. By measuring leaves from throughout the seed plants using persistent homology, a defined morphospace comparing all leaves is demarcated. Clear differences in shape between major phylogenetic groups are detected and estimates of leaf shape diversity within plant families are made. The approach predicts plant family above chance. The application of a persistent homology method, using topological features, to measure leaf shape allows for a unified morphometric framework to measure plant form, including shapes, textures, patterns, and branching architectures.
  11. Multivariate Data Analysis Using Persistence-Based Filtering and Topological Signatures (2012)

    B. Rieck, H. Mara, H. Leitte
    Abstract The extraction of significant structures in arbitrary high-dimensional data sets is a challenging task. Moreover, classifying data points as noise in order to reduce a data set bears special relevance for many application domains. Standard methods such as clustering serve to reduce problem complexity by providing the user with classes of similar entities. However, they usually do not highlight relations between different entities and require a stopping criterion, e.g. the number of clusters to be detected. In this paper, we present a visualization pipeline based on recent advancements in algebraic topology. More precisely, we employ methods from persistent homology that enable topological data analysis on high-dimensional data sets. Our pipeline inherently copes with noisy data and data sets of arbitrary dimensions. It extracts central structures of a data set in a hierarchical manner by using a persistence-based filtering algorithm that is theoretically well-founded. We furthermore introduce persistence rings, a novel visualization technique for a class of topological features-the persistence intervals-of large data sets. Persistence rings provide a unique topological signature of a data set, which helps in recognizing similarities. In addition, we provide interactive visualization techniques that assist the user in evaluating the parameter space of our method in order to extract relevant structures. We describe and evaluate our analysis pipeline by means of two very distinct classes of data sets: First, a class of synthetic data sets containing topological objects is employed to highlight the interaction capabilities of our method. Second, in order to affirm the utility of our technique, we analyse a class of high-dimensional real-world data sets arising from current research in cultural heritage.
  12. Topological Feature Extraction for Comparison of Terascale Combustion Simulation Data (2011)

    Ajith Mascarenhas, Ray W. Grout, Peer-Timo Bremer, Evatt R. Hawkes, Valerio Pascucci, Jacqueline H. Chen
    Abstract We describe a combinatorial streaming algorithm to extract features which identify regions of local intense rates of mixing in twoterascale turbulent combustion simulations. Our algorithm allows simulation data comprised of scalar fields represented on 728x896x512 or 2025x1600x400 grids to be processed on a single relatively lightweight machine. The turbulence-induced mixing governs the rate of reaction and hence is of principal interest in these combustion simulations. We use our feature extraction algorithm to compare two very different simulations and find that in both the thickness of the extracted features grows with decreasing turbulence intensity. Simultaneous consideration of results of applying the algorithm to the HO2 mass fraction field indicates that autoignition kernels near the base of a lifted flame tend not to overlap with the high mixing rate regions.
  13. Computing Robustness and Persistence for Images (2010)

    P. Bendich, H. Edelsbrunner, M. Kerber
    Abstract We are interested in 3-dimensional images given as arrays of voxels with intensity values. Extending these values to a continuous function, we study the robustness of homology classes in its level and interlevel sets, that is, the amount of perturbation needed to destroy these classes. The structure of the homology classes and their robustness, over all level and interlevel sets, can be visualized by a triangular diagram of dots obtained by computing the extended persistence of the function. We give a fast hierarchical algorithm using the dual complexes of oct-tree approximations of the function. In addition, we show that for balanced oct-trees, the dual complexes are geometrically realized in R3 and can thus be used to construct level and interlevel sets. We apply these tools to study 3-dimensional images of plant root systems.
  14. Model Comparison via Simplicial Complexes and Persistent Homology (2020)

    Sean T. Vittadello, Michael P. H. Stumpf
    Abstract In many scientific and technological contexts we have only a poor understanding of the structure and details of appropriate mathematical models. We often need to compare different models. With available data we can use formal statistical model selection to compare and contrast the ability of different mathematical models to describe such data. But there is a lack of rigorous methods to compare different models \emph\a priori\. Here we develop and illustrate two such approaches that allow us to compare model structures in a systematic way. Using well-developed and understood concepts from simplicial geometry we are able to define a distance based on the persistent homology applied to the simplicial complexes that captures the model structure. In this way we can identify shared topological features of different models. We then expand this, and move from a distance between simplicial complexes to studying equivalences between models in order to determine their functional relatedness.
  15. Single-Cell Topological RNA-Seq Analysis Reveals Insights Into Cellular Differentiation and Development (2017)

    Abbas H. Rizvi, Pablo G. Camara, Elena K. Kandror, Thomas J. Roberts, Ira Schieren, Tom Maniatis, Raul Rabadan
    Abstract Transcriptional programs control cellular lineage commitment and differentiation during development. Understanding cell fate has been advanced by studying single-cell RNA-seq, but is limited by the assumptions of current analytic methods regarding the structure of data. We present single-cell topological data analysis (scTDA), an algorithm for topology-based computational analyses to study temporal, unbiased transcriptional regulation. Compared to other methods, scTDA is a non-linear, model-independent, unsupervised statistical framework that can characterize transient cellular states. We applied scTDA to the analysis of murine embryonic stem cell (mESC) differentiation in vitro in response to inducers of motor neuron differentiation. scTDA resolved asynchrony and continuity in cellular identity over time, and identified four transient states (pluripotent, precursor, progenitor, and fully differentiated cells) based on changes in stage-dependent combinations of transcription factors, RNA-binding proteins and long non-coding RNAs. scTDA can be applied to study asynchronous cellular responses to either developmental cues or environmental perturbations.
  16. Mapping Geometric and Electromagnetic Feature Spaces With Machine Learning for Additively Manufactured RF Devices (2022)

    Deanna Sessions, Venkatesh Meenakshisundaram, Andrew Gillman, Alexander Cook, Kazuko Fuchi, Philip R. Buskohl, Gregory H. Huff
    Abstract Multi-material additive manufacturing enables transformative capabilities in customized, low-cost, and multi-functional electromagnetic devices. However, process-specific fabrication anomalies can result in non-intuitive effects on performance; we propose a framework for identifying defect mechanisms and their performance impact by mapping geometric variances to electromagnetic performance metrics. This method can accelerate additive fabrication feedback while avoiding the high computational cost of in-line electromagnetic simulation. We first used dimension reduction to explore the population of geometric manufacturing anomalies and electromagnetic performance. Convolutional neural networks are then trained to predict the electromagnetic performance of the printed geometries. In generating the networks, we explored two inputs: one image-derived geometric description and one using the same description with additional simulated electromagnetic information. Network latent space analysis shows the networks learned both geometric and electromagnetic values even without electromagnetic input. This result demonstrates it is possible to create accelerated additive feedback systems predicting electromagnetic performance without in-line simulation.
  17. Topological Echoes of Primordial Physics in the Universe at Large Scales (2020)

    Alex Cole, Matteo Biagetti, Gary Shiu
    Abstract We present a pipeline for characterizing and constraining initial conditions in cosmology via persistent homology. The cosmological observable of interest is the cosmic web of large scale structure, and the initial conditions in question are non-Gaussianities (NG) of primordial density perturbations. We compute persistence diagrams and derived statistics for simulations of dark matter halos with Gaussian and non-Gaussian initial conditions. For computational reasons and to make contact with experimental observations, our pipeline computes persistence in sub-boxes of full simulations and simulations are subsampled to uniform halo number. We use simulations with large NG (\$f_\\rm NL\\textasciicircum\\rm loc\=250\$) as templates for identifying data with mild NG (\$f_\\rm NL\\textasciicircum\\rm loc\=10\$), and running the pipeline on several cubic volumes of size \$40~(\textrm\Gpc/h\)\textasciicircum\3\\$, we detect \$f_\\rm NL\\textasciicircum\\rm loc\=10\$ at \$97.5\%\$ confidence on \$\sim 85\%\$ of the volumes for our best single statistic. Throughout we benefit from the interpretability of topological features as input for statistical inference, which allows us to make contact with previous first-principles calculations and make new predictions.
  18. Delineation of a Conserved Arrestin-Biased Signaling Repertoire in Vivo (2015)

    Stuart Maudsley, Bronwen Martin, Diane Gesty-Palmer, Huey Cheung, Calvin Johnson, Shamit Patel, Kevin G. Becker, William H. Wood, Yongqing Zhang, Elin Lehrmann, Louis M. Luttrell
    Abstract Biased G protein–coupled receptor agonists engender a restricted repertoire of downstream events from their cognate receptors, permitting them to produce mixed agonist-antagonist effects in vivo. While this opens the possibility of novel therapeutics, it complicates rational drug design, since the in vivo response to a biased agonist cannot be reliably predicted from its in cellula efficacy. We have employed novel informatic approaches to characterize the in vivo transcriptomic signature of the arrestin pathway-selective parathyroid hormone analog [d-Trp12, Tyr34]bovine PTH(7-34) in six different murine tissues after chronic drug exposure. We find that [d-Trp12, Tyr34]bovine PTH(7-34) elicits a distinctive arrestin-signaling focused transcriptomic response that is more coherently regulated across tissues than that of the pluripotent agonist, human PTH(1-34). This arrestin-focused network is closely associated with transcriptional control of cell growth and development. Our demonstration of a conserved arrestin-dependent transcriptomic signature suggests a framework within which the in vivo outcomes of arrestin-biased signaling may be generalized.
  19. Ultrahigh-Pressure Form of \$\Mathrm\Si\\\mathrm\O\\_\2\\$ Glass With Dense Pyrite-Type Crystalline Homology (2019)

    M. Murakami, S. Kohara, N. Kitamura, J. Akola, H. Inoue, A. Hirata, Y. Hiraoka, Y. Onodera, I. Obayashi, J. Kalikka, N. Hirao, T. Musso, A. S. Foster, Y. Idemoto, O. Sakata, Y. Ohishi
    Abstract High-pressure synthesis of denser glass has been a longstanding interest in condensed-matter physics and materials science because of its potentially broad industrial application. Nevertheless, understanding its nature under extreme pressures has yet to be clarified due to experimental and theoretical challenges. Here we reveal the formation of OSi4 tetraclusters associated with that of SiO7 polyhedra in SiO2 glass under ultrahigh pressures to 200 gigapascal confirmed both experimentally and theoretically. Persistent homology analyses with molecular dynamics simulations found increased packing fraction of atoms whose topological diagram at ultrahigh pressures is similar to a pyrite-type crystalline phase, although the formation of tetraclusters is prohibited in the crystalline phase. This critical difference would be caused by the potential structural tolerance in the glass for distortion of oxygen clusters. Furthermore, an expanded electronic band gap demonstrates that chemical bonds survive at ultrahigh pressure. This opens up the synthesis of topologically disordered dense oxide glasses.
  20. Morphometrics Reveals Complex and Heritable Apple Leaf Shapes (2018)

    Zoë Migicovsky, Mao Li, Daniel H. Chitwood, Sean Myles
    Abstract Apple (Malus spp.) is a widely grown and valuable fruit crop. Leaf shape is important for flowering in apple and may also be an early indicator for other agriculturally valuable traits. We examined 9,000 leaves from 869 unique apple accessions using linear measurements and comprehensive morphometric techniques. We identified allometric variation as the result of differing length-to-width aspect ratios between accessions and species of apple. The allometric variation was due to variation in the width of the leaf blade, not the length. Aspect ratio was highly correlated with the first principal component (PC1) of morphometric variation quantified using elliptical Fourier descriptors (EFDs) and persistent homology (PH). While the primary source of variation was aspect ratio, subsequent PCs corresponded to complex shape variation not captured by linear measurements. After linking the morphometric information with over 122,000 genome-wide single nucleotide polymorphisms (SNPs), we found high SNP heritability values even at later PCs, indicating that comprehensive morphometrics can capture complex, heritable phenotypes. Thus, techniques such as EFDs and PH are capturing heritable biological variation that would be missed using linear measurements alone.
  21. Current Theoretical Models Fail to Predict the Topological Complexity of the Human Genome (2015)

    Javier Arsuaga, Reyka G. Jayasinghe, Robert G. Scharein, Mark R. Segal, Robert H. Stolz, Mariel Vazquez
    Abstract Understanding the folding of the human genome is a key challenge of modern structural biology. The emergence of chromatin conformation capture assays (e.g., Hi-C) has revolutionized chromosome biology and provided new insights into the three dimensional structure of the genome. The experimental data are highly complex and need to be analyzed with quantitative tools. It has been argued that the data obtained from Hi-C assays are consistent with a fractal organization of the genome. A key characteristic of the fractal globule is the lack of topological complexity (knotting or inter-linking). However, the absence of topological complexity contradicts results from polymer physics showing that the entanglement of long linear polymers in a confined volume increases rapidly with the length and with decreasing volume. In vivo and in vitro assays support this claim in some biological systems. We simulate knotted lattice polygons confined inside a sphere and demonstrate that their contact frequencies agree with the human Hi-C data. We conclude that the topological complexity of the human genome cannot be inferred from current Hi-C data.
  22. Topological Data Analysis and Diagnostics of Compressible Magnetohydrodynamic Turbulence (2018)

    Irina Makarenko, Paul Bushby, Andrew Fletcher, Robin Henderson, Nikolay Makarenko, Anvar Shukurov
    Abstract The predictions of mean-field electrodynamics can now be probed using direct numerical simulations of random flows and magnetic fields. When modelling astrophysical magnetohydrodynamics, it is important to verify that such simulations are in agreement with observations. One of the main challenges in this area is to identify robust quantitative measures to compare structures found in simulations with those inferred from astrophysical observations. A similar challenge is to compare quantitatively results from different simulations. Topological data analysis offers a range of techniques, including the Betti numbers and persistence diagrams, that can be used to facilitate such a comparison. After describing these tools, we first apply them to synthetic random fields and demonstrate that, when the data are standardized in a straightforward manner, some topological measures are insensitive to either large-scale trends or the resolution of the data. Focusing upon one particular astrophysical example, we apply topological data analysis to H i observations of the turbulent interstellar medium (ISM) in the Milky Way and to recent magnetohydrodynamic simulations of the random, strongly compressible ISM. We stress that these topological techniques are generic and could be applied to any complex, multi-dimensional random field.
  23. A Functional Data-Driven Approach to Monitor and Analyze Equipment Degradation in Multiproduct Batch Processes (2023)

    Joel Sansana, Ricardo Rendall, Mark N. Joswiak, Ivan Castillo, Gloria Miller, Leo H. Chiang, Marco S. Reis
    Abstract Equipment degradation is ubiquitous in the Chemical Process Industry (CPI), causing significant losses in efficiency, controllability, and plant economy, as well as an increased environmental fingerprint and additional operational safety risks. The case of fouling in heat exchangers, in particular, is well-known and pervasive but still hard to cope with, given the complexity of the underlying mechanisms and the difficulty of assessing its extension in real-time. This problem becomes even more complex in batch processes producing different products, where multiple recipes are used, bringing additional variability and new challenges to the analysis. In this work, we propose a functional data-driven approach for streamlining the analysis and monitoring of the progression of fouling taking place in heat exchangers in multiproduct batch processes. With the approach developed and presented in this paper, process analysis can be efficiently conducted by integrating historical data with engineering knowledge. Furthermore, a surrogate measure of fouling extension in heat exchangers is proposed, that can be readily implemented as an equipment health indicator (EHI) leading to a safer operation of the heat exchanger.
  24. Ghrist Barcoded Video Frames. Application in Detecting Persistent Visual Scene Surface Shapes Captured in Videos (2019)

    Arjuna P. H. Don, James F. Peters
    Abstract This article introduces an application of Ghrist barcodes in the study of persistent Betti numbers derived from vortex nerve complexes found in triangulations of video frames. A Ghrist barcode (also called a persistence barcode) is a topology of data pic- tograph useful in representing the persistence of the features of changing shapes. The basic approach is to introduce a free Abelian group representation of intersecting filled polygons on the barycenters of the triangles of Alexandroff nerves. An Alexandroff nerve is a maximal collection of triangles of a common vertex in the triangulation of a finite, bounded planar region. In our case, the planar region is a video frame. A Betti number is a count of the number of generators is a finite Abelian group. The focus here is on the persistent Betti numbers across sequences of triangulated video frames. Each Betti number is mapped to an entry in a Ghrist barcode. Two main results are given, namely, vortex nerves are Edelsbrunner-Harer nerve complexes and the Betti number of a vortex nerve equals k + 2 for a vortex nerve containing k edges attached between a pair of vortex cycles in the nerve.
  25. Vibration Sensors for Detecting Critical Events: A Case Study in Ferrosilicon Production (2024)

    Maryna Waszak, Terje Moen, Anders H. Hansen, Grégory Bouquet, Antoine Pultier, Xiang Ma, Dumitru Roman
    Abstract The mining and metal processing industries are undergoing a transformation through digitization, with sensors and data analysis playing a crucial role in modernization and increased efficiency. Vibration sensors are particularly important in monitoring production infrastructure in metal processing plants. This paper presents the installation of vibration sensors in an actual industrial environment and the results of spectral vibration data analysis. The study demonstrates that vibration sensors can be installed in challenging environments such as metal processing plants and that analyzing vibration patterns can provide valuable insights into predicting machine failures and different machine states. By utilizing dimensionality reduction and dominant frequency observation, we analyzed vibration data and identified patterns that are indicative of potential machine states and critical events that reduce production throughput. This information can be used to improve maintenance, minimize downtime, and ultimately enhance the production process’s overall efficiency. This study highlights the importance of digitization and data analysis in the mining and metal processing industries, particularly the capability not only to predict critical events before they impact production throughput and take action accordingly but also to identify machine states for legacy equipment and be part of retrofitting strategies.
  26. Relational Persistent Homology for Multispecies Data With Application to the Tumor Microenvironment (2023)

    Bernadette J. Stolz, Jagdeep Dhesi, Joshua A. Bull, Heather A. Harrington, Helen M. Byrne, Iris H. R. Yoon
    Abstract Topological data analysis (TDA) is an active field of mathematics for quantifying shape in complex data. Standard methods in TDA such as persistent homology (PH) are typically focused on the analysis of data consisting of a single entity (e.g., cells or molecular species). However, state-of-the-art data collection techniques now generate exquisitely detailed multispecies data, prompting a need for methods that can examine and quantify the relations among them. Such heterogeneous data types arise in many contexts, ranging from biomedical imaging, geospatial analysis, to species ecology. Here, we propose two methods for encoding spatial relations among different data types that are based on Dowker complexes and Witness complexes. We apply the methods to synthetic multispecies data of a tumor microenvironment and analyze topological features that capture relations between different cell types, e.g., blood vessels, macrophages, tumor cells, and necrotic cells. We demonstrate that relational topological features can extract biological insight, including the dominant immune cell phenotype (an important predictor of patient prognosis) and the parameter regimes of a data-generating model. The methods provide a quantitative perspective on the relational analysis of multispecies spatial data, overcome the limits of traditional PH, and are readily computable.
  27. Rootstock Effects on Scion Phenotypes in a ‘Chambourcin’ Experimental Vineyard (2019)

    Zoë Migicovsky, Zachary N Harris, Laura L Klein, Mao Li, Adam McDermaid, Daniel H Chitwood, Anne Fennell, Laszlo G Kovacs, Misha Kwasniewski, Jason P Londo, Qin Ma, Allison J Miller
    Abstract Understanding how root systems modulate shoot system phenotypes is a fundamental question in plant biology and will be useful in developing resilient agricultural crops. Grafting is a common horticultural practice that joins the roots (rootstock) of one plant to the shoot (scion) of another, providing an excellent method for investigating how these two organ systems affect each other. In this study, we used the French-American hybrid grapevine ‘Chambourcin’ (Vitis L.) as a model to explore the rootstock–scion relationship. We examined leaf shape, ion concentrations, and gene expression in ‘Chambourcin’ grown ungrafted as well as grafted to three different rootstocks (‘SO4’, ‘1103P’ and ‘3309C’) across 2 years and three different irrigation treatments. We found that a significant amount of the variation in leaf shape could be explained by the interaction between rootstock and irrigation. For ion concentrations, the primary source of variation identified was the position of a leaf in a shoot, although rootstock and rootstock by irrigation interaction also explained a significant amount of variation for most ions. Lastly, we found rootstock-specific patterns of gene expression in grafted plants when compared to ungrafted vines. Thus, our work reveals the subtle and complex effect of grafting on ‘Chambourcin’ leaf morphology, ionomics, and gene expression.
  28. Measuring Hidden Phenotype: Quantifying the Shape of Barley Seeds Using the Euler Characteristic Transform (2021)

    Erik J. Amézquita, Michelle Y. Quigley, Tim Ophelders, Jacob B. Landis, Daniel Koenig, Elizabeth Munch, Daniel H. Chitwood
    Abstract Shape plays a fundamental role in biology. Traditional phenotypic analysis methods measure some features but fail to measure the information embedded in shape comprehensively. To extract, compare, and analyze this information embedded in a robust and concise way, we turn to Topological Data Analysis (TDA), specifically the Euler Characteristic Transform. TDA measures shape comprehensively using mathematical representations based on algebraic topology features. To study its use, we compute both traditional and topological shape descriptors to quantify the morphology of 3121 barley seeds scanned with X-ray Computed Tomography (CT) technology at 127 micron resolution. The Euler Characteristic Transform measures shape by analyzing topological features of an object at thresholds across a number of directional axes. A Kruskal-Wallis analysis of the information encoded by the topological signature reveals that the Euler Characteristic Transform picks up successfully the shape of the crease and bottom of the seeds. Moreover, while traditional shape descriptors can cluster the seeds based on their accession, topological shape descriptors can cluster them further based on their panicle. We then successfully train a support vector machine (SVM) to classify 28 different accessions of barley based exclusively on the shape of their grains. We observe that combining both traditional and topological descriptors classifies barley seeds better than using just traditional descriptors alone. This improvement suggests that TDA is thus a powerful complement to traditional morphometrics to comprehensively describe a multitude of “hidden” shape nuances which are otherwise not detected.
  29. Classification of COVID-19 via Homology of CT-SCAN (2021)

    Sohail Iqbal, H. Fareed Ahmed, Talha Qaiser, Muhammad Imran Qureshi, Nasir Rajpoot
    Abstract In this worldwide spread of SARS-CoV-2 (COVID-19) infection, it is of utmost importance to detect the disease at an early stage especially in the hot spots of this epidemic. There are more than 110 Million infected cases on the globe, sofar. Due to its promptness and effective results computed tomography (CT)-scan image is preferred to the reverse-transcription polymerase chain reaction (RT-PCR). Early detection and isolation of the patient is the only possible way of controlling the spread of the disease. Automated analysis of CT-Scans can provide enormous support in this process. In this article, We propose a novel approach to detect SARS-CoV-2 using CT-scan images. Our method is based on a very intuitive and natural idea of analyzing shapes, an attempt to mimic a professional medic. We mainly trace SARS-CoV-2 features by quantifying their topological properties. We primarily use a tool called persistent homology, from Topological Data Analysis (TDA), to compute these topological properties. We train and test our model on the "SARS-CoV-2 CT-scan dataset" i̧tep\soares2020sars\, an open-source dataset, containing 2,481 CT-scans of normal and COVID-19 patients. Our model yielded an overall benchmark F1 score of \$99.42\% \$, accuracy \$99.416\%\$, precision \$99.41\%\$, and recall \$99.42\%\$. The TDA techniques have great potential that can be utilized for efficient and prompt detection of COVID-19. The immense potential of TDA may be exploited in clinics for rapid and safe detection of COVID-19 globally, in particular in the low and middle-income countries where RT-PCR labs and/or kits are in a serious crisis.
  30. Continuous Indexing of Fibrosis (CIF): Improving the Assessment and Classification of MPN Patients (2022)

    Hosuk Ryou, Korsuk Sirinukunwattana, Alan Aberdeen, Gillian Grindstaff, Bernadette Stolz, Helen Byrne, Heather A. Harrington, Nikolaos Sousos, Anna L. Godfrey, Claire N. Harrison, Bethan Psaila, Adam J. Mead, Gabrielle Rees, Gareth D. H. Turner, Jens Rittscher, Daniel Royston
    Abstract The detection and grading of fibrosis in myeloproliferative neoplasms (MPN) is an important component of disease classification, prognostication and disease monitoring. However, current fibrosis grading systems are only semi-quantitative and fail to capture sample heterogeneity. To improve the detection, quantitation and representation of reticulin fibrosis, we developed a machine learning (ML) approach using bone marrow trephine (BMT) samples (n = 107) from patients diagnosed with MPN or a reactive / nonneoplastic marrow. The resulting Continuous Indexing of Fibrosis (CIF) enhances the detection and monitoring of fibrosis within BMTs, and aids the discrimination of MPN subtypes. When combined with megakaryocyte feature analysis, CIF discriminates between the frequently challenging differential diagnosis of essential thrombocythemia (ET) and pre-fibrotic myelofibrosis (pre-PMF) with high predictive accuracy [area under the curve = 0.94]. CIF also shows significant promise in the identification of MPN patients at risk of disease progression; analysis of samples from 35 patients diagnosed with ET and enrolled in the Primary Thrombocythemia-1 (PT-1) trial identified features predictive of post-ET myelofibrosis (area under the curve = 0.77). In addition to these clinical applications, automated analysis of fibrosis has clear potential to further refine disease classification boundaries and inform future studies of the micro-environmental factors driving disease initiation and progression in MPN and other stem cell disorders. The image analysis methods used to generate CIF can be readily integrated with those of other key morphological features in MPNs, including megakaryocyte morphology, that lie beyond the scope of conventional histological assessment. Key PointsMachine learning enables an objective and quantitative description of reticulin fibrosis within the bone marrow of patients with myeloproliferative neoplasms (MPN),Automated analysis and Continuous Indexing of Fibrosis (CIF) captures heterogeneity within MPN samples and has utility in refined classification and disease monitoringQuantitative fibrosis assessment combined with topological data analysis may help to predict patients at increased risk of progression to post-ET myelofibrosis, and assist in the discrimination of ET and pre-fibrotic PMF (pre-PMF)