🍩 Database of Original & Non-Theoretical Uses of Topology

(found 2 matches in 0.001044s)
  1. Hyperparameter Optimization of Topological Features for Machine Learning Applications (2019)

    Francis Motta, Christopher Tralie, Rossella Bedini, Fabiano Bini, Gilberto Bini, Hamed Eramian, Marcio Gameiro, Steve Haase, Hugh Haddox, John Harer, Nick Leiby, Franco Marinozzi, Scott Novotney, Gabe Rocklin, Jed Singer, Devin Strickland, Matt Vaughn
    Abstract This paper describes a general pipeline for generating optimal vector representations of topological features of data for use with machine learning algorithms. This pipeline can be viewed as a costly black-box function defined over a complex configuration space, each point of which specifies both how features are generated and how predictive models are trained on those features. We propose using state-of-the-art Bayesian optimization algorithms to inform the choice of topological vectorization hyperparameters while simultaneously choosing learning model parameters. We demonstrate the need for and effectiveness of this pipeline using two difficult biological learning problems, and illustrate the nontrivial interactions between topological feature generation and learning model hyperparameters.
  2. Persistence Images: A Stable Vector Representation of Persistent Homology (2017)

    Henry Adams, Tegan Emerson, Michael Kirby, Rachel Neville, Chris Peterson, Patrick Shipman, Sofya Chepushtanova, Eric Hanson, Francis Motta, Lori Ziegelmeier
    Abstract Many data sets can be viewed as a noisy sampling of an underlying space, and tools from topological data analysis can characterize this structure for the purpose of knowledge discovery. One such tool is persistent homology, which provides a multiscale description of the homological features within a data set. A useful representation of this homological information is a persistence diagram (PD). Efforts have been made to map PDs into spaces with additional structure valuable to machine learning tasks. We convert a PD to a finite-dimensional vector representation which we call a persistence image (PI), and prove the stability of this transformation with respect to small perturbations in the inputs. The discriminatory power of PIs is compared against existing methods, showing significant performance gains. We explore the use of PIs with vector-based machine learning tools, such as linear sparse support vector machines, which identify features containing discriminating topological information. Finally, high accuracy inference of parameter values from the dynamic output of a discrete dynamical system (the linked twist map) and a partial differential equation (the anisotropic Kuramoto-Sivashinsky equation) provide a novel application of the discriminatory power of PIs.