🍩 Database of Original & Non-Theoretical Uses of Topology
(found 4 matches in 0.001794s)
-
-
The Importance of Forgetting: Limiting Memory Improves Recovery of Topological Characteristics From Neural Data (2018)
Samir Chowdhury, Bowen Dai, Facundo MémoliAbstract
We develop of a line of work initiated by Curto and Itskov towards understanding the amount of information contained in the spike trains of hippocampal place cells via topology considerations. Previously, it was established that simply knowing which groups of place cells fire together in an animal’s hippocampus is sufficient to extract the global topology of the animal’s physical environment. We model a system where collections of place cells group and ungroup according to short-term plasticity rules. In particular, we obtain the surprising result that in experiments with spurious firing, the accuracy of the extracted topological information decreases with the persistence (beyond a certain regime) of the cell groups. This suggests that synaptic transience, or forgetting, is a mechanism by which the brain counteracts the effects of spurious place cell activity. -
Topological Analysis of Population Activity in Visual Cortex (2008)
Gurjeet Singh, Facundo Memoli, Tigran Ishkhanov, Guillermo Sapiro, Gunnar Carlsson, Dario L. RingachAbstract
Information in the cortex is thought to be represented by the joint activity of neurons. Here we describe how fundamental questions about neural representation can be cast in terms of the topological structure of population activity. A new method, based on the concept of persistent homology, is introduced and applied to the study of population activity in primary visual cortex (V1). We found that the topological structure of activity patterns when the cortex is spontaneously active is similar to those evoked by natural image stimulation and consistent with the topology of a two sphere. We discuss how this structure could emerge from the functional organization of orientation and spatial frequency maps and their mutual relationship. Our findings extend prior results on the relationship between spontaneous and evoked activity in V1 and illustrates how computational topology can help tackle elementary questions about the representation of information in the nervous system. -
Stable Signatures for Dynamic Graphs and Dynamic Metric Spaces via Zigzag Persistence (2018)
Woojin Kim, Facundo MemoliAbstract
When studying flocking/swarming behaviors in animals one is interested in quantifying and comparing the dynamics of the clustering induced by the coalescence and disbanding of animals in different groups. In a similar vein, studying the dynamics of social networks leads to the problem of characterizing groups/communities as they form and disperse throughout time. Motivated by this, we study the problem of obtaining persistent homology based summaries of time-dependent data. Given a finite dynamic graph (DG), we first construct a zigzag persistence module arising from linearizing the dynamic transitive graph naturally induced from the input DG. Based on standard results, we then obtain a persistence diagram or barcode from this zigzag persistence module. We prove that these barcodes are stable under perturbations in the input DG under a suitable distance between DGs that we identify. More precisely, our stability theorem can be interpreted as providing a lower bound for the distance between DGs. Since it relies on barcodes, and their bottleneck distance, this lower bound can be computed in polynomial time from the DG inputs. Since DGs can be given rise by applying the Rips functor (with a fixed threshold) to dynamic metric spaces, we are also able to derive related stable invariants for these richer class of dynamic objects. Along the way, we propose a summarization of dynamic graphs that captures their time-dependent clustering features which we call formigrams. These set-valued functions generalize the notion of dendrogram, a prevalent tool for hierarchical clustering. In order to elucidate the relationship between our distance between two DGs and the bottleneck distance between their associated barcodes, we exploit recent advances in the stability of zigzag persistence due to Botnan and Lesnick, and to Bjerkevik.