🍩 Database of Original & Non-Theoretical Uses of Topology

(found 2 matches in 0.001667s)
  1. Using Persistent Homology as a New Approach for Super-Resolution Localization Microscopy Data Analysis and Classification of γH2AX Foci/Clusters (2018)

    Andreas Hofmann, Matthias Krufczik, Dieter W. Heermann, Michael Hausmann
    Abstract DNA double strand breaks (DSB) are the most severe damages in chromatin induced by ionizing radiation. In response to such environmentally determined stress situations, cells have developed repair mechanisms. Although many investigations have contributed to a detailed understanding of repair processes, e.g., homologous recombination repair or non-homologous end-joining, the question is not sufficiently answered, how a cell decides to apply a certain repair process at a certain damage site, since all different repair pathways could simultaneously occur in the same cell nucleus. One of the first processes after DSB induction is phosphorylation of the histone variant H2AX to γH2AX in the given surroundings of the damaged locus. Since the spatial organization of chromatin is not random, it may be conclusive that the spatial organization of γH2AX foci is also not random, and rather, contributes to accessibility of special repair proteins to the damaged site, and thus, to the following repair pathway at this given site. The aim of this article is to demonstrate a new approach to analyze repair foci by their topology in order to obtain a cell independent method of categorization. During the last decade, novel super-resolution fluorescence light microscopic techniques have enabled new insights into genome structure and spatial organization on the nano-scale in the order of 10 nm. One of these techniques is single molecule localization microscopy (SMLM) with which the spatial coordinates of single fluorescence molecules can precisely be determined and density and distance distributions can be calculated. This method is an appropriate tool to quantify complex changes of chromatin and to describe repair foci on the single molecule level. Based on the pointillist information obtained by SMLM from specifically labeled heterochromatin and γH2AX foci reflecting the chromatin morphology and repair foci topology, we have developed a new analytical methodology of foci or foci cluster characterization, respectively, by means of persistence homology. This method allows, for the first time, a cell independent comparison of two point distributions (here the point distributions of two γH2AX clusters) with each other of a selected ensample and to give a mathematical measure of their similarity. In order to demonstrate the feasibility of this approach, cells were irradiated by low LET (linear energy transfer) radiation with different doses and the heterochromatin and γH2AX foci were fluorescently labeled by antibodies for SMLM. By means of our new analysis method, we were able to show that the topology of clusters of γH2AX foci can be categorized depending on the distance to heterochromatin. This method opens up new possibilities to categorize spatial organization of point patterns by parameterization of topological similarity.
  2. Segmentation of Biomedical Images by a Computational Topology Framework (2017)

    Rodrigo Rojas Moraleda, Wei Xiong, Niels Halama, Katja Breitkopf-Heinlein, Steven Steven, Luis Salinas, Dieter W. Heermann, Nektarios A. Valous
    Abstract The segmentation of cell nuclei is an important step towards the automated analysis of histological images. The presence of a large number of nuclei in whole-slide images necessitates methods that are computationally tractable in addition to being effective. In this work, a method is developed for the robust segmentation of cell nuclei in histological images based on the principles of persistent homology. More specifically, an abstract simplicial homology approach for image segmentation is established. Essentially, the approach deals with the persistence of disconnected sets in the image, thus identifying salient regions that express patterns of persistence. By introducing an image representation based on topological features, the task of segmentation is less dependent on variations of color or texture. This results in a novel approach that generalizes well and provides stable performance. The method conceptualizes regions of interest (cell nuclei) pertinent to their topological features in a successful manner. The time cost of the proposed approach is lower-bounded by an almost linear behavior and upper-bounded by O(n2) in a worst-case scenario. Time complexity matches a quasilinear behavior which is O(n1+ɛ) for ε \textless 1. Images acquired from histological sections of liver tissue are used as a case study to demonstrate the effectiveness of the approach. The histological landscape consists of hepatocytes and non-parenchymal cells. The accuracy of the proposed methodology is verified against an automated workflow created by the output of a conventional filter bank (validated by experts) and the supervised training of a random forest classifier. The results are obtained on a per-object basis. The proposed workflow successfully detected both hepatocyte and non-parenchymal cell nuclei with an accuracy of 84.6%, and hepatocyte cell nuclei only with an accuracy of 86.2%. A public histological dataset with supplied ground-truth data is also used for evaluating the performance of the proposed approach (accuracy: 94.5%). Further validations are carried out with a publicly available dataset and ground-truth data from the Gland Segmentation in Colon Histology Images Challenge (GlaS) contest. The proposed method is useful for obtaining unsupervised robust initial segmentations that can be further integrated in image/data processing and management pipelines. The development of a fully automated system supporting a human expert provides tangible benefits in the context of clinical decision-making.