🍩 Database of Original & Non-Theoretical Uses of Topology
(found 7 matches in 0.001434s)
-
-
Topological Data Analysis of Task-Based fMRI Data From Experiments on Schizophrenia (2021)
Bernadette J. Stolz, Tegan Emerson, Satu Nahkuri, Mason A. Porter, Heather A. Harrington -
Topological Data Analysis Distinguishes Parameter Regimes in the Anderson-Chaplain Model of Angiogenesis (2021)
John T. Nardini, Bernadette J. Stolz, Kevin B. Flores, Heather A. Harrington, Helen M. ByrneAbstract
Angiogenesis is the process by which blood vessels form from pre-existing vessels. It plays a key role in many biological processes, including embryonic development and wound healing, and contributes to many diseases including cancer and rheumatoid arthritis. The structure of the resulting vessel networks determines their ability to deliver nutrients and remove waste products from biological tissues. Here we simulate the Anderson-Chaplain model of angiogenesis at different parameter values and quantify the vessel architectures of the resulting synthetic data. Specifically, we propose a topological data analysis (TDA) pipeline for systematic analysis of the model. TDA is a vibrant and relatively new field of computational mathematics for studying the shape of data. We compute topological and standard descriptors of model simulations generated by different parameter values. We show that TDA of model simulation data stratifies parameter space into regions with similar vessel morphology. The methodologies proposed here are widely applicable to other synthetic and experimental data including wound healing, development, and plant biology. -
Geometric Anomaly Detection in Data (2020)
Bernadette J. Stolz, Jared Tanner, Heather A. Harrington, Vidit NandaAbstract
The quest for low-dimensional models which approximate high-dimensional data is pervasive across the physical, natural, and social sciences. The dominant paradigm underlying most standard modeling techniques assumes that the data are concentrated near a single unknown manifold of relatively small intrinsic dimension. Here, we present a systematic framework for detecting interfaces and related anomalies in data which may fail to satisfy the manifold hypothesis. By computing the local topology of small regions around each data point, we are able to partition a given dataset into disjoint classes, each of which can be individually approximated by a single manifold. Since these manifolds may have different intrinsic dimensions, local topology discovers singular regions in data even when none of the points have been sampled precisely from the singularities. We showcase this method by identifying the intersection of two surfaces in the 24-dimensional space of cyclo-octane conformations and by locating all of the self-intersections of a Henneberg minimal surface immersed in 3-dimensional space. Due to the local nature of the topological computations, the algorithmic burden of performing such data stratification is readily distributable across several processors. -
Relational Persistent Homology for Multispecies Data With Application to the Tumor Microenvironment (2023)
Bernadette J. Stolz, Jagdeep Dhesi, Joshua A. Bull, Heather A. Harrington, Helen M. Byrne, Iris H. R. YoonAbstract
Topological data analysis (TDA) is an active field of mathematics for quantifying shape in complex data. Standard methods in TDA such as persistent homology (PH) are typically focused on the analysis of data consisting of a single entity (e.g., cells or molecular species). However, state-of-the-art data collection techniques now generate exquisitely detailed multispecies data, prompting a need for methods that can examine and quantify the relations among them. Such heterogeneous data types arise in many contexts, ranging from biomedical imaging, geospatial analysis, to species ecology. Here, we propose two methods for encoding spatial relations among different data types that are based on Dowker complexes and Witness complexes. We apply the methods to synthetic multispecies data of a tumor microenvironment and analyze topological features that capture relations between different cell types, e.g., blood vessels, macrophages, tumor cells, and necrotic cells. We demonstrate that relational topological features can extract biological insight, including the dominant immune cell phenotype (an important predictor of patient prognosis) and the parameter regimes of a data-generating model. The methods provide a quantitative perspective on the relational analysis of multispecies spatial data, overcome the limits of traditional PH, and are readily computable. -
Persistent Homology of Time-Dependent Functional Networks Constructed From Coupled Time Series (2017)
Bernadette J. Stolz, Heather A. Harrington, Mason A. PorterAbstract
We use topological data analysis to study “functional networks” that we construct from time-series data from both experimental and synthetic sources. We use persistent homology with a weight rank clique filtration to gain insights into these functional networks, and we use persistence landscapes to interpret our results. Our first example uses time-series output from networks of coupled Kuramoto oscillators. Our second example consists of biological data in the form of functional magnetic resonance imaging data that were acquired from human subjects during a simple motor-learning task in which subjects were monitored for three days during a five-day period. With these examples, we demonstrate that (1) using persistent homology to study functional networks provides fascinating insights into their properties and (2) the position of the features in a filtration can sometimes play a more vital role than persistence in the interpretation of topological features, even though conventionally the latter is used to distinguish between signal and noise. We find that persistent homology can detect differences in synchronization patterns in our data sets over time, giving insight both on changes in community structure in the networks and on increased synchronization between brain regions that form loops in a functional network during motor learning. For the motor-learning data, persistence landscapes also reveal that on average the majority of changes in the network loops take place on the second of the three days of the learning process. -
The Shape of Cancer Relapse: Topological Data Analysis Predicts Recurrence in Paediatric Acute Lymphoblastic Leukaemia (2021)
Salvador Chulián, Bernadette J. Stolz, Álvaro Martínez-Rubio, Cristina Blázquez Goñi, Juan F. Rodríguez Gutiérrez, Teresa Caballero Velázquez, Águeda Molinos Quintana, Manuel Ramírez Orellana, Ana Castillo Robleda, José Luis Fuster Soler, Alfredo Minguela Puras, María Victoria Martínez Sánchez, María Rosa, Víctor M. Pérez-García, Helen ByrneAbstract
Acute Lymphoblastic Leukaemia (ALL) is the most frequent paediatric cancer. Modern therapies have improved survival rates, but approximately 15-20 % of patients relapse. At present, patients’ risk of relapse are assessed by projecting high-dimensional flow cytometry data onto a subset of biomarkers and manually estimating the shape of this reduced data. Here, we apply methods from topological data analysis (TDA), which quantify shape in data via features such as connected components and loops, to pre-treatment ALL datasets with known outcomes. We combine these fully unsupervised analyses with machine learning to identify features in the pre-treatment data that are prognostic for risk of relapse. We find significant topological differences between relapsing and non-relapsing patients and confirm the predictive power of CD10, CD20, CD38, and CD45. Further, we are able to use the TDA descriptors to predict patients who relapsed. We propose three prognostic pipelines that readily extend to other haematological malignancies. Teaser Topology reveals features in flow cytometry data which predict relapse of patients with acute lymphoblastic leukemia