🍩 Database of Original & Non-Theoretical Uses of Topology

(found 2 matches in 0.001316s)
  1. Revisiting Abnormalities in Brain Network Architecture Underlying Autism Using Topology-Inspired Statistical Inference (2018)

    Sourabh Palande, Vipin Jose, Brandon Zielinski, Jeffrey Anderson, P. Thomas Fletcher, Bei Wang
    Abstract A large body of evidence relates autism with abnormal structural and functional brain connectivity. Structural covariance magnetic resonance imaging (scMRI) is a technique that maps brain regions with covarying gray matter densities across subjects. It provides a way to probe the anatomical structure underlying intrinsic connectivity networks (ICNs) through analysis of gray matter signal covariance. In this article, we apply topological data analysis in conjunction with scMRI to explore network-specific differences in the gray matter structure in subjects with autism versus age-, gender-, and IQ-matched controls. Specifically, we investigate topological differences in gray matter structure captured by structural correlation graphs derived from three ICNs strongly implicated in autism, namely the salience network, default mode network, and executive control network. By combining topological data analysis with statistical inference, our results provide evidence of statistically significant network-specific structural abnormalities in autism.
  2. Visual Detection of Structural Changes in Time-Varying Graphs Using Persistent Homology (2018)

    Mustafa Hajij, Bei Wang, Carlos Scheidegger, Paul Rosen
    Abstract Topological data analysis is an emerging area in exploratory data analysis and data mining. Its main tool, persistent homology, has become a popular technique to study the structure of complex, high-dimensional data. In this paper, we propose a novel method using persistent homology to quantify structural changes in time-varying graphs. Specifically, we transform each instance of the time-varying graph into a metric space, extract topological features using persistent homology, and compare those features over time. We provide a visualization that assists in time-varying graph exploration and helps to identify patterns of behavior within the data. To validate our approach, we conduct several case studies on real-world datasets and show how our method can find cyclic patterns, deviations from those patterns, and one-time events in time-varying graphs. We also examine whether a persistence-based similarity measure satisfies a set of well-established, desirable properties for graph metrics.